—u
MBSE

Content of the lectures
Model-Based Systems Engineering (MBSysE) and
Model-Based Software Engineering (MBSE)

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

SE =

26.12.2023

Why Modelling? We need to Compensate the Growth of Complexity

« Society thrives on cyber-physical systems
— Communication, energy, home automation,
- ok ¥

+ Added-value mainly software

Chevy Volt Boeing 787
(10 Mio. LoC) (14 Mio. LoC)

« Software ity grows in
— Distributed, self-adaptive, intelligent, ...

* Modeling can overcompensate the growth
of complexity in systems engineering

« Systems engineering is interdisciplinary LHC CERN High-Value Car Google Services
— Conceptual gap: problem vs. solution domains (50 Mio. LoC) (100 Mio. LoC) (2Bio. LoC)

2 Softvars Enginserng | RWTH Aschen S

The Limits of my Language Mean the Limits of my World (Wittgenstein)

Environmental Human
Impact Machine
Interaction

Electrical
Engineering

Mechanical
Structure

Hck 3
W “ L_- — '
£ Ng il

Regulations

3 Software Erginearng | RWTH Aschen, RWTH

The Limits of my Language Mean the Limits of my World (Wittgenstein)

4 Softere Engineering | RWTH Aachen S

Learning Objectives

« Understanding, applying, analyzing, evaluating, and creating v productor point o view?
~ Models by applying modeling methods o e dosn
~ Functional modeling and models in systems engineering
~ Requirements modeling
~ Data modeling
— Structure and behavior modeling
~ Systematic CPS engineering

rdnt st tand o decison?
e i et g

« Syntax and semantics of selected modeling
languages (including UML, SysML)
+ Digital twins Understanding: FomLiT
Bloom —
Taxonomy

* Quality assurance

s Software Enginearng | RWTH Aschen RWTH

Some First Literature

+ [Rum16] Modeling with UML: Language, Concepts,
Methods. Springer International, July 2016. Agile
Modeling
+ [Rum17] Agile Modeling with UML: Code Generation, with UML
Testing, Refactoring. Springer International, 2017

* German versions are also available online:
https:/mbse.se-rwth.de/

6 Softvars Engnoerng | RWTH Aschen

Content of the Lecture

Modelling in Development + Modelling Cyberphysical Systems
Software and Systems Engineering + Modelling Software
Development Methods (Agility, Scrum, V)

@y

« Software synthesis (code generation)

Modelling Paradigms:
~ Data, Function, Structure, Behavior « Composition 4‘\;/\
* Refinement
« Modelling languages, e.g. « Evolution (Agility)
~ Class Diagrams for data and physical entities « Variability _
~ StateCharts for state-based behavior
~ Architecture for function, component and gadgets

e

iR
ure

7 Softare Engineering | RWTH Aachon S RWTH

26.12.2023

MBSE

1. Introduction and objectives
1.1. What is a Model?

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

S ey

What is a model?

And what is it good for?

o Software Erginearng | RWTH Aschen, S RWTH

Models are Used in all Disciplines

w0 Softere Engineering | RWTH Aachen S
e

Definition of the Term “model”

Amodel is a reduced ively P ion of the
original system in terms of size, detail, and/or functionality.

(Stachowiak 1973)

Ein Modell ist seinem Wesen nach eine in MaRstab, Detailliertheit
und/oder Funkti itat verkirzte bezi i i
Darstellung des originalen Systems.

(German original)

" Software Enginearng | RWTH Aschen S RWTH

Consequences from the “model” Definition

A model is a reduced respecti D! ion of the
original system in terms of size, detail, and/or functionality.

H
(Stachowiak 1973 l D oo

>0

+ Models have a purpose with respects to the original:
~ They are used to study the original
+ Models can be prescriptive: +

— The model is designed first and the system then after the model

« There is an original

« Abstraction (reduction) is integral part of being a model

+ Models can be descriptive:
~ The system exists and the model is used to study and understand the system

2 Software Enginoaring | RWTH Aachen S

26.12.2023

How Model and System relate

B

creates,
analyses

Forms of models:
* Mental model
— exists in the head of a developer

+ UML / SysML / DSL model
~ Engineering model for development:
communication, generation, analysis, and simulation

generates to,
predicts, describes, ...

W

generates

« Implicitmodel (embedded in code)
~ Engineering model for simulation
(no communication, no analysis, no generation)
~ May be usable as software part in a system

derives from,

« Learned model (from data)
~ Derived from system or observed from system execution
~ (MUNN: also in an implicit, “executable” form)

" Softare Engineering | RWTH Aschon S RWTH

Physics: Validity of Models

* Rutherford's and Bohr's atomic models
« Einstein's theory of relativity

+ Model of the Big Bang

+ Physical laws are models, ...

+ Not all models are correct,
~ Geocentric model of Copernicus

+ Many models are only valid in certain boundaries

" Softare Engineering | RUWTH Aachon S
i

The First (Still Existing) Models: Ancient Cave Drawings

|

15 Software Erginearng | RWTH Aschen, S RWTH

Model of Climate Change

+ Amodel used for prediction
« There is exactly one original
+ The model is complex:
~ Consisting of many sub-models for
— Phenomena and geometric separation
+ Abunch of integrated models

Ghargos nth Amospr:
s Creusion

-

+ The model is composed through various
~ Laws from theories (physics, efc.)
~ Alarge set of measurements

* The model is executable for simulation
~ And written in programming languages that
(more or less directly) encode physical laws

Changes e ocen
Gression, s vt Boguchemisy

® Softvars Engnoerng | RWTH Aschen S

Modeling Needs a Sound Theory

* Models are composed
Models are evolving
Models are compared
Models are analyzed
Models are used to derive/generate/synthesize systems
+ Models are defined using theorems and laws

Consequently:

« Definition and use of models are
based on an appropriate
underlying theory

Math is a well-known, very precise and
rigorous foundation for such a theory.

" Software Enginoaring | RWTH Aachen

MBSE

1. Models
1.2. An Example: Automata

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

26.12.2023

Recognizing Automata

+ Recognizing automaton (S,1,8,s0,F) has
« (also: nondeterministic, alphabetical Rabin-Scott
Machine (RSA))

~ Finite set of states S
— Input alphabet |
Set of initial states s0cS
— Set of final states Fcs
Transition relation 8cSxI'xS
where
- dstent input in

the
spontaneous transitions
S E=1U{g)

~ Allsets S, 1, s0, F are non-empty and finite

transition with

marker for input symbol 0

initial state P
\S 'Y Lo 0
—
—x(m N ®
N 1 A
4 /

e /
initial state marker for

final state

Examples of Recognizing Automata

0 Software Engincaring | RATH Aschen

——_ multiple

0-9 transitions
09
q
incomplete transition relation, because
comma is not accepted in this state
0.9 09
09 R 09
|y)

C/\@
e-transition — 7 &

non-deterministic
because of resp. 5

B Softvars Enginserng | RWTH Aschen

Example Automata Syntax:

Model Representation by Graphics, Text and Math

« Graphical / diagrammatic:

« Textual in ASCII / UTF-8:

+ Mathematical:

(1) [Automator)

2-b>1;

1
2
3
4 1-a>2
5
6

}

automaton Simple {
state 1 <<initial>>;
state 2 <<final>>;

« Tabular:

target
source ™ final

initial 1 a
2

1{Tuple (S, 1, 1, {2}, 6)

2|~ Set of states S={12}

3|~ Set of inputs 1={a,b}

4|~ Initial state 1€$

5|- Final states @2cs

6|~ Transition function 8:5 x 1S

7 with 6(1,0) =2; §(2,b) =1

« typically restrictions apply
(context conditions)

+ more variants: XML/JSON-encoding,
Java-encoding (State Pattem), ...

Example Automat:
Semantics Defil

n using Math

2 Software Engiearing | RWTH Aachen

SE . ™M

+ Each representation of automata has its benefits
+ However, math is efficient and optimal for constraints
(context conditions), e.g.,:
— All states are reachable: §°(s0,1) =S
Automaton is total: vs€S, ielates: 8(s,) =t
or short: dom(8) =Sx1I

+ Math is also optimal for formal semantics definition:
Choice of the semantics domain:
Sem = 1"

« Semantics mapping: the set of accepted words:
M@ ={werl s(s0, weF}
« (this definition assumes automaton is total)

+ Various interpretations of domain | are possible:
ASCII characters (e.g., in parsing)
Signals (e.g., in communicating distributed systems)

- Automaton syntax defined by tuple .
Sy=(S,,s0ES,FSS,5:Sx1-5) };j N

Setof states S e

. Setofinputs |

= Initial state SOES

« Final states Fcs

« Transition function (partial) &§:Sx1—S

=

simple interpretation of
inputs I in the real world

M: Sy - Sem

PS: [is the set of words over alphabet |
5" the transitive closure over function &

2 Softwars Enginearing | RWTH Aschen

SE .

Example Automata:
Nondeterministic Automata

« Firstof all:
Nondeterminism and underspecification are related
(almost the same)

To introduce nondeterminism, we adapt the
automaton syntax to:
~Sy=(S, I, SOCS, FES, 8:Sx1- 0(S))
Set of initial states S0
— Transition relation & instead of function:
& can now offer multiple transitions (|5(s,i)| > 1 allowed)

Semantics domain uses again the set(!) of words
over I:

Sem =1

Semantics mapping: the set of accepted words with :
path to a final state:
MA)={wel|6(0,w)nF=0)

Example Automata:
A refi 1t and i cy

,_,; ==
- Finite automata come with a rich theory P00
and well-known techniques: (2)-e
- Powerset derives a

- Error completion
+ e~ Transition elimination
+ Equivalence checks (used e.g., by model checkers)
+ Mapping of regular expression to automata
* Which includes various forms of automaton

composition (, U, -, sequence .o., Kleene closure ")

+ Theory helps to define semantics as well to efficiently map
the toan i

2 Software Enginearng | RWTH Aschen

SE = ™M

* Nondeterministic automata
.« Sy=(S, 1, S0CS, FCS, 6:5x1- p(5))
. Sem=1
« M(A)={wel|3s0€S50:5(s0, w)n F # 0}

* Automaton Ais well defined:
i.e. it accepts something
~ Syntactic sufficient criterion:
= ISES Vn: it Sppq € 8(5p i) Asg ESONS, EF
~ Can effectively be checked using transitive closure

M(A) = @

+ Automaton A is refinement of B: M(A) = M(B)
— i.e. Ais more deterministic than B
Can effectively be checked using a simulation relation
(see model checking)

) o

+ Automata A and B are consistent: M(A) n M(B) # @
~ i.e. the do not specify conflicting properties of a component
Can effectively be checked using an intersection automaton

+ We recognize:
+ Automaton theory demonstrates that:
- M(A)NM(B) = M(ANB)
+ i.e. composition n of automata is conform to individual
mapping and composition of semantics

+ Set theory is an excellent vehicle to understand consistency,
underspecification and refinement

2 Softvars Engnoerng | RWTH Aschen

SE:-

MBSE

1. Models
1.3. Theory

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

26.12.2023

What is a theory?

And what is it good for?

This distinguishes from “theory” in some senses
of common language:

~ Abelief, policy, or procedure proposed
~ Ahypothesis assumed for the sake of argument or investigation
~ An unproved assumption : conjecture

~ Abstract thought : speculation

“Nothing is more practical than a good theory.”

S RWTH = Sotvre Engineerng | RWTH Aschen S RWTH
Characterization of the Concept “Theory” Ci from the Ch ization of "Theory”
Definition: c Definition: ,
(]
Atheory is an analytical tool for understanding, D Atheory is an analytical tool for understanding,
explaining, and making predictions about a given ,m > explaining, and making predictions about a given 1§
subject matter. gg 9 subject matter. « Theory is constructed of a set of sentences that are
] : -
70 § e entirely true statements about the subject under
£ QTP consideration.

« Aformal theory is syntactic in nature.
~ Thus a theory comes with an underlying language

+ Theories are usually expressed mathematically,
symbolically, or in natural language, but are generally
expected to follow principles of rational thought or
logic.
~ Consequence: A theory can always be constructed in the

formal language of mathematical logic.

~ Theories have underlying assumptions (axioms).
~ Theories have explanatory power, but also limitations.

+ An axiomatic theory, consists of axioms and rules of
inference.
~ Atheorem is a statement that can be derived from those
axioms by application of these rules of inference.

(partly adapted from Wikipedia))

2 Software Engiearing | RWTH Aachen

SE . |™M

El Softvars Engnoerng | RWTH Aschen

SE .

Example Theory: Automata

The Automaton Theory has

.

+ afoundational language / data structure /
mathematical object: b
~ usually a tuple: (S, 1,50, F, 6)

« arich body of algorithmic operations to ‘>©

~ Transformation of automata

~ Derivation of relevant properties

such as:

~ Removal of unreachable states

- ion from linisti

~ Refinement

— Composition of automata

~ Degision for language inclusion between automata, etc.

~ Slicing of relevant automaton parts

to

+ Automata in practice also have many
~ concrete forms of syntaxes with
~ various extensions and
~ applications in various domains.

+ and precise laws underpinning these algorithmic results

2 Software Enginoaring | RWTH Aachen

SE=- ™M

Example Theory: Math

+ Math has been growing over hundreds of years.
— math has become a big building consisting of a complex
set of theories.

* lts basics:
~ Constructing math objects with:
sets, functions, tuples, graphs and numbers
~ Laws as core mathematical property definition.

* Observations:
— Math has tried hard to have only foundational axioms

~ To ensure consistency proofs are often re-done using
different theorems

~ Proves can be seen as transformation of mathematical
objects.

~ Equation is the most important tool:
- ata=24

~ It has a very precise meaning (semantics):
« It tells us what is equal,

— But also gives methodical assistance:

~ the substitution property allows us to use it for
transformation -- in both directions and with pattern
matching, e.g.
- ata transforms to 2*a
« 2(x-1) transforms to (x-1)+(x-1)
« atat+a transforms to 2*a+a (or to a+2*a)

~ Theory works best if the underlying objects of discourse
are made explicit, a sound and consistent semantics is
given, and operations on the objects are grounded on the
semantics.

0 Softvars Engnoerng | RWTH Aschen

Modelling Language and its Theory is based on a Modelling Paradigm

For simplification and a modelling
theory is based on a modelling paradigm around which
the theory is built. Highly relevant paradigms:

« Data structure
~ describing how data is organized (stored, transformed,...)

« Care: Each paradigm induces an abstraction with

underlying assumptions on the real world

* Behavior
~ describing digital event and continuous processes

« Function
~ describing how (physical and software) components fulfill
their duties

* Architecture
~ describes structure and relationships of components

interpretations in the
real world (with limitations)

— these usually have limitations

MBSE

1. Models
1.4. Language, Method

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

26.12.2023

ar Sofre Engineting | RWTH Aschen RWTH RWTH
SE = SE ..
Modelling Languages in the Software Domain Modelling L in for Sy Engineering
+ Languages are a key for software development - + Digitalization of engineering domains demands -~ SysMLaMechatronics
~ Modeling languages like UML P09 pytnon Fortran Kolin - explicit languages for as well /77 CMSD pamL+OIL
~ Programming languages like Java L MODELICA .
- Markup languages fike XML, HTML for various purposes | iy Java coo LISp « Languages are a key for systems engineering K4 S]I\If/?LIJ;_‘I?\?K o STEP
* Modelling languages enable to make models explicit perl Sed, ank, bash ~ Physical modeling: Modelica, Simulink . 0
and manageable (“first-class citizens”). o Scala KotlinPHP _ CAD: STEP, NX CAD, ECAD MODAF EXPRESS-G
« Explicit modelling languages enable to Statecharts Ada = Simulation: Dymola Statecharts H.A
~ Build automatic tools for model analysis, synthesis, code " sa Delphi - Knowledge: OWL, RDF UML4loT
- %Z"uif':&",ajf' e ‘ : C# J— - Integration: AutomatonML vHDL <AutomationML/> Dymola
~ Aggregate data to information in form of models) Schoms - Ciruits: VHDL STEP-NC s SysML4Modelica
~ Models@Runtime enable adaptivity C Typescript Haskell r C++ - Building Information Models (BIM) X DSpa ™ e_‘?
« Computer science invented modeling languages i Aulia Eiffel &“‘f OPM RDF r}:n::;xiié
Rust i XML
« Digitalization of other engineering domains enforces Lt Verlog SEF MechatronicUML UM
explicit languages for
n Sotwars Engneadng | RWTH Azchen RWTH m Sotvare Engiosarng | RWTH Aschen RWTH
SE - SE ..
Unified Modeling Language (UML) The Unified ing Language is a p Modeling L for Y
Goals
~1990: é)o(gg‘ @ Features
. for « Description of essential properties of the program like
OOSE oMT UML 1.1 and documentation in a blueprint
Jacobson Rumbaugh et al UML 1.3 — among developers
UML 1.4 — developers with users « Structuring of problem and solution
UML 1.5 ~ union of several previously existing methods
UML 2'0 « Abstraction of implementation details
1995: UML 2'1 > + Set of modeling concepts and concrete notations
Booch / 2000 UML 22 * Standardized since September 1997 by OMG « Definition of various views covering several paradigms
Rumbaugh / 2010: UML 2.3 « Developed by Booch, Rumbaugh, Jacobson, Selic, — task assignment and workflows
Jacobson ; . Kobryn, Cook and many others... - software and system architecture
¢ UML244 R — interaction between components
UML 2.5 — behavior of components
UML 2.5.1 E ~ implementation
+ UML is a second-generation notation for object-oriented modeling B T — physical distribution
B Sotvars Engneadng | RWTH Azchen RWTH :s Sotvrs Engioearng | RWTH Aschen

SE = |™M

26.12.2023

Systems Modeling Language (SysML)

Model-Based Development

sy gans [—
+ SysML is dedicated to model the software part of
(embedded) systems £ 1 1 >
« It started as variant of UML, but will probably become - :
independent (with 2.0) s =
-
« SysML reuses 7 of UML's 14 diagrams, and adds 2 new — 2007: SysML 1.0
diagrams - 2008: SysML 1.1
~ requirement and parametric diagrams i 2010: SysML 1.2

E 2012 SysML13
- wed 2015 SysML 1.4

o * 2017: SysML15
:> = 2019: SysML 1.6

~2024: SysML 2.0

a7 ‘ Software Engincaring | RATH Aschen

SE=.|™M

* Models are the central notation
in the development process

[t N/
‘\ models / rapid prototyping

— T [Gmensenng oy

automated tests constructive: 3D-printing
code generation, synthesis

« Models can serve as central notation for systems development ‘

=

+ Agood modeling language can be used for analysis and synthesis

a8 ‘ Softvars Enginserng | RWTH Aschen

S e P

Needs for ing during pment of and

M1. Specifying systems in requirements engineering M8. Defining reference models for the capture, design,
or implementation of requirements
M2. Formulating and evaluating design alternatives
M. Statically analyzing or verifying design decisions

M3. Describing system aspects or views for
communication M10. Efficiently evolving designs

M4. Designing system architectures M11. Understanding semantic differences between
versions

M5. Describing systems for validating desired system
properties in simulations M12. Describing detailed system behavior for
generating software parts

M6. Collecting user feedback through visual

simulations, prototypes, and mock-ups M13. Implementing/realizing/synthesizing systems

Needs for modeling during system operation

M14. Customizing systems M17. Documenting systems

M15. Monitoring running systems M18. Capturing system execution traces and labeling
them with model elements, thus linking system
and traces reliably

M16. Capturing deviations between desired or even
optimal (i properties and observabl
(realized) system functionalities

in general
M7. Modeling variants in product lines Do Uk Coses o Somanic-Drven Nereing Langiages Dovioptant ks CasetforSemanic Drvn Neodeing Languages
In- Commnicatiors of the ACH, Voluma 66(5),p. 62.71. ACM, May 2023 In: Commurications of the ACM, Vokume 66(5),gp. 6271, ACM, May 2023
o Softere Engioaring | RWTHAachen S RWTH o Sotvars Engrnrng | RWTH Azchon S RWTH
=N o
Models in Software Engineering Agile UML-based Software Development: Constructive Use of Models for Coding and Testing
. class object
. |ndust‘ry standard: Unified Mpdelmg Language deployment diagrams statecharts b) sequence
15 kinds of diagrams (class diagrams, Statecharts etc.) diagram lagrams diagrams
[e B
« Industry standard: Systems Modeling Language 3
« But beyond the UML and SysML: N J
L
~ Petri Nets Algebraic Specifications)
Logic Entity/Relationship-Models
— Relations Jackson Structured Diagrams
Dataflow diagrams Control flow diagrams UML-P - UML-Profile for agile Modeling consistency parameterized
SDL Grammars analyzer code
~ Finite automata Regular expressions Tutorial on language, semantics, code generator
Nassi-Schneidermann diagrams ~ BPMN generation, test cases, test pattern, l
— efc. refactoring, evolution 3 =
http:/mbse.se-rwth.de/ |
N [— SE_ o A e—— SE_ ™
= ooty

26.12.2023

Domain Specific Language (DSL) General Progr ing L (GPL) vs SysML/UML vs Domain Specific Language (DSL)
CWMortl
+ A domain specific language (DSL) is a software 7 Wonti fmh" « Explicit models written in UML/SysML > Systems Engineering
e 4 OTWe |
language specialized to a particular application e Ane F‘"-""-"—
domain, — +Model can be analyzed (formal methods!)
P + Relatively compact (and manageable) .
~ Ageneral-purpose language (GPL) in contrast is broadly MooELTCA ‘v‘ Monti - For execution: code generator needed
applicable across domains and lacks specialized features . N -
for a particular domain (such as C++, Java, ...). « Explicit models written in a DSL -> Various domains with =
T recurring problem /m 2
.) +Model can be analyzed (formal methods!) 9 P! f onte

« allows us to model application domains and systems [comment [unit | oy + Very compact models structures (‘

in those domains like or doble Ouside terp. °C - Language tools need to be developed sofLe.

~ business, telecommunication, traffic, ... RT double Room temp. © - For execution: code generator needed

OT <6 implies RT >13.0 and

+ addresses the application domain instead of the plesRT =08 O MATLAB « Implicit“models” written in a programming language (GPL) Java

technical solution . 5 SIMULINK

giomstiond:! +Model can easily be executed Python e CH#

. . " " + very general programming techniques, Turing complete

usually built on one modelling paradigm - Relatively technical and awkward “models”
+ is not necessarily “executable® or “complete”) Efﬁ,”‘ﬂ;&;“;;"‘syesurgg;f,,e - Simulationin Kotlin

g lyses p Systems Engineering
“ Softrs Ergineaing | RWTH Azchen " Sotvre Engineerng | RWTH Aschen S RWTH
o=

The Methodological Pyramid V-Model: A Standard Process to Develop Software

Process models, such as RUP, V-Model, define the The V-Model has

overall development process .

~ a constructive left wing:
+ from requirements, analysis, design, coding

Requirement
process Gathering

« They are composed of an appropriate set of
models

development tasks and activities, such as “elicit

1ts”, “review the ~ and a quality assurance and testing right wing:

= from unit tests to acceptance tests

development tasks'
and acf es,
process patterns

+ To accomplish these tasks a large set of “micro
methods”, e.g. using a best practice, a design
pattern, tools for analysis, generation or synthesis,
tools for evolution and transformations, etc.

In the V-Model
~ each activity on the left corresponds to tests on the right

micro-methodology, analysis,
transformation, generation

Sottware
nograion
=
oate o
fisei

+ The V-Model assumes manual work in all activities, Design
« All these tasks are finally executed on the set of it is agnostic to models and automation l
artifacts, that contains all relevant development artifacts: models,
information, such as requirements, all kinds of diagrams, code « In practice: more than 2/3 of the work occur on the Coding
models, tests, code. right side

s Software Engiearing | RWTH Aachen S RWTH s Softvars Engnoerng | RWTH Aschen S
= o

Models are Most Useful if Grounded on a Theory of Modeling Automation Of Development Steps

« In a software & systems development process:
~ Models are composed
~ Models evolve
~ Models are compared
~ Models are analyzed
— Models are used to derive/generate/synthesize systems

+ “Automation has proven to be the single most effective means of making dramatic improvements in both
productivity and product quality”
Bran Selic, 2019
« Automating :
~ Generation, synthesis
- C ive derivation of i or more detailed forms of models
« Transformation
= Correctness by construction

This works best if there is

~ A) a precise understanding of what a well-defined model is (syntax) - Analys\§ . N
~ B)a precise definition of what a model means (semantics) + Consistency checking, com rules, etc.
— C)an elaborated underlying mathematical theory = Applicability of _transfmmauons
consisting of theorems and laws that give us « Automatic verification
tools at hand to analyze, transform, test, etc. the models _ Testing
~ Syntax and semantics are covered by modeling language definitions — Simulation
— Theory is an underlying supplement for the semantics definition « As a technique for testing and dynamic analysis
~ ... and many more
a Softer Enginoaring | RWTHAachen S RWTH 4, Softvars Engrerng | RWTH Aschan S RWTH
e e

26.12.2023

Summary of this Lecture in form of a Concept Model ise your ding of Models: Who/What is (not) a Model?

i Theory enables
contains
/ T Development
Model language is sound method
for

foundation
conforms to\ hierarchically

consists of

used for

o
P

produced by

executed by
T
/\

uses

| Developer | [Tool |

|:> « This i relevant and their i ips of this lecture.
exercise

What is a Model, What is an Original?

P
MBSE

2. Modeling Structures with Class Diagrams
2.1. Object-Oriented Structural Modeling in a Nutshell

2 Prof. Dr. Bernhard Rumpe
Leci nest pas une fufie. | Software Engineering

RWTH Aachen
(Rene Magritte) X
exercise http://www.se-rwth.de/
5t Softere Engioaring | RWTHAachen S RWTH S RWTH
= =

Structural Modeling for CPS Object-Orientation is an Intuitive Modeling Paradigm Close to our Perception of Reality
« Modeling cyber-physical systems needs to describe the structure « We perceive individuals (objects) that + e.g.: Muhammad Ali, Albert Einstein, Ronaldo

of relevant objects ~ have properties (attributes) and

~ physical components ~ actin their environment (through functions)

~ software components + Objects belong to classes, which define their type + eg.: Person, Boxer, Athlete, Scientist, Citizen

— data
« Classes define properties and functions of all their objects * e.g.: Each Person has a name
+ e.g.: Each Boxer has a history of fights
« e.g.: Each Scientist can conduct research
and Scientists can act as Citizens

« Often many instances/copies of an object are needed
— classes describe sets of objects

(screws, engines, kinds of data values)
« Structuring systems and their parts via “classified” objects

« Asystem is structurally decomposed in subsystems and supports
components. ~ grouping of properties and functions are modelled together
~ structural modelling is used throughout the development ~ encapsulation: some of the properties are internal, access / * eg.: Current mood of a Person
connection through an explicit interface
+ This chapter di class as the for = e — inheritance: o(:u’ec«s inheriting from a supertype inherit - e.g.: each Scientist is a Person
" N > N o properties and functions
structural modelling using the object-oriented paradigm. e ~ polymorphism: an object (instance of a class) can occur as - e.g.: Boxers and Scientists can act as Citizens

element of several “supertypes” and act as such

5 Software Enginearng | RWTH Aschen S RWTH s Softvars Engnoerng | RWTH Aschen S RWTH

== froey

26.12.2023

Objects in the Physical World (Systems Engineering)

« Asystem consists of a dynamically changing
number of physical objects

Objects represent entities of the domain and
instances of exactly one class

class
An object can be uniquely identified LightBulb objects

‘%%‘5

« An object has a state as defined by its properties
~ result of an operation depends on the current state

« An object has a behavior modelled by the
functions of its class

Objects connect state with functional behavior.

s Software Engincaring | RATH Aschen S RWTH

Ci pts of Object Ori

+ An object belongs to exactly one class
— aclass defines the properties and the functional behavior of its objects.

« Classes are organized in a generalization tree, in which the properties and the functional
behavior are refined in sub-classifications. —

classes (types)
of cars

e.Go Cars Tesla Cars Chevrolet Cars

s Softvars Enginserng | RWTH Aschen S
i

e
MBSE

2. Modeling Structures with Class Diagrams

[0y

[commn].

2.2. Modeling with UML Class Diagrams atrtocon §
e i""“
. J
Prof. Dr. Bernhard Rumpe assocaion
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

Example of a Class Diagram

this is a class

diagram (CD) ">

Owner Vehicle
String firstName y String brand
String lastName Double mileage
int age Date dateOfApproval
Car MotorCycle
int numberOfDoors Boolean isTouring
Double trunkVolume Boolean isSport

« Characterizes all relevant properties and
associations of drivers and vehicles for a
specific application or domain

s Softvars Engnoerng | RWTH Aschen S

Example of a Class Diagram

this is a class

diagram (D) Meaning of this Class Diagram (CD)
Ovner Vehicle * It defines a class Owner
String firstName String brand — each instance of Owner (Owner object) has three
String lastName Double mileage attributes firstName, lastName, age
int age Date dateOfApproval (attributes are defining properties of owners)
— each Owner object is related to 1 or more Vehicle
objects.
* aclass Vehicle
Car MotorCycle — each Vehicle object has three atiributes
int numberOfDoors Boolean isTouring
Double trunkVolume Boolean isSport * aclass Car

~ a Caris a special type of vehicle

— each Caris a Vehicle

~ each Car object can be used as a Vehicle object

— each Car object has at least the attributes inherited from
class Vehicle (and possible more)

SE=.|™M

« Characterizes all relevant properties and
associations of drivers and vehicles for a
specific application or domain

5 Software Enginoaring | RWTH Aachen

Meaning Of Class Diagrams

this is a class

diagram (€D) General Meaning Of Class Diagrams
Owner Vehicle « Aclass diagram defines a set of possible object
String firstName String brand structures
String lastName Double mileage
int age Date dateOfApproval « Classes define sets of objects with shared properties
+ An object is instance of one class
(this class is also the type)
Car MotorCycle
it rumberOfoors | Boclean sTourng e ot ratons (sssosatone) o aver clsses
Double trunkVolume Boolean isSport o

« Characterizes all relevant properties and
associations of drivers and vehicles for a
specific application or domain

& Softvars Engnoerng | RWTH Aschen S

10

26.12.2023

Class with Attributes and Methods

field for the class name

visibility:
isibility ElectricEngine

/\
+long partNumber

/\ #String brand

protected Date constructed
private—______——"|+long getPartNumber()
+int getAge()

+ start(Power p)

ignite()

+ String getBrand()

public

attribute list:
__~ typescan be omitted

] (also

list of methods (also called functions):
<+ signature of a method can be
incomplete (e.g. arguments omitted)

called properties)

Class and some Object Instances

ElectricEngine

+long partNumber
#String brand
-Date constructed

+ long getPartNumber()
+int getAge()
+ start(Power p)

this is an
object diagram (OD)

partNumber = "X984154°

brand = "BMW eDrive40*
constructed = May 17, 10:30

kitt:ElectricEngine
partNumber = "X1387482"
brand = "Tesla IPM-SynRM3"
constructed = July 2, 14:00

#ignite()
+ String getBrand()

— comment partNumber = "YT22333"
S N « Aclass has many objects as “instances” "’a"“’:‘;e“’w_%“fff;g;
his ele najne is « Objects have concrete attribute values constructed = May 17, 10+
uilt for cars
o St Ergveing | RUTH Achen S | RWTH o St Ergoeerng | RWTH Ashen S | RWTH
Stereotypes Derived Attributes

« Stereotype classifies a model elements (e.g., class or attribute)

« Specializes the meaning of the model element
~ allows a special representation
~ target-specific code generation
- ete.

« Stereotype shape: «Name»
stereotypes for classes

«interface» «abstract»

methods | Engine Wheel |

«message»
StatusMessage

only + start(Power p)
- long outerRadius

Stereotype is « Predefined * Predefined
* Meant for external + No direct instances
access (but subclasses)
* No instances

- long innerRadius | methods and
attributes

+ Custom defined stereotype

- has application- or

company-specific meaning

s Software Erginearng | RWTH Aschen,

SE - |™M

« If an attribute can be calculated (derived) from others,
then it is labeled with */".

Wheel

- long innerRadius

- long outerRadius

derived attribute ~———p+ / long volume
with visibility

+ The relationship (calculation) of the attribute can be
given using e.g. logic or math:

— volume =2 * z2 * innerRadius? * outerRadius

* In OOP:
~ Derived attribute can be stored redundantly

~ Or can be calculated by a method each time

innerRadius

o Softere Engineering | RWTH Aachen S
=

Class Attributes and Methods

Certain attributes (and methods) are equal for all

objects of a class: they do not belong to individual

objects, but belong to the class

~ E.g. the atomic number of a material or the number of
existing instances of a class

In OOP (e.g. Java) “static” keyword is used; in the
UML such elements are underlined.

In OOP constructors are also static elements that
belong to the class

Methodical guideline: to be used as little as possible
(inheritance issues: no access to super, no use
with interfaces, ...)

IronGadget

Associations

IronGadget(...)
int atomicNumber
nt noOfObijects

class attribute

(underlined,;

3 Software Enginearng | RWTH Aschen

+ An association describes the relationship between two classes

analyze

+ {ordered}

DriversLog —

tax office demands logs
for business cars

o Softvars Engnoerng | RWTH Aschen S
froey

11

26.12.2023

Associations -2

Associations - Roles, Names, Cardinalities

association role

association name

Person

cardinality

navigation (knowledge)
in both directions

remembers order and
allows qualified
access (through
position number)

DriversLog

navigation direction
(class do know about each other)
(here only in one direction)

——
|+ fordered)” optional tag {ordered):

assocationrole ———_

asset owner

J

owns

cardinality
+ Association as binary relation between classes «+ Cardinalities
~ “Person owns Vehicle” ~ exactly one: 1
— optional: 0..1
~ the person is navigating to the vehicle using ~ arbitrary: *
« association role “asset” on the opposite side — not null: 1.* (or +)
+ aperson may own of up to 99 cars (0 .99) — fixed intervals: 3.9, 17 , 21, 42..99 (but rarely used)

{ordered} access can be used on cardinalities >=2

& ‘ Software Engincaring | RATH Aschen

SE = |™M

i

& Softvars Enginserng | RWTH Aschen S RWTH

Role Names

Associations relates Classes and Links relate Objects

+ Role names are used for navigation
(logical and/or in the implementation)

« What if the role name is missing?
« Alternatively usable, if unambiguous
a) class name of the opposite class with small caps

b) association name

« Example
— given: Vehicle v

~ equivalent are:

vowner, v.person, v.property

- asset owner -
0.* property 0.1

+ Manifestation of an association through links at asset owner
runtime: 0.09 owns " -Person
[oD)) object
[oo) e
(with objects

and links)

link between two objects

o Software Engiearing | RWTH Aachen

SE-.|™M

n Softvars Engnoerng | RWTH Aschen S

Composition

Qualified Association and Links

« Composition = special form of association
+ Semantics of composition

~ composite is composed of parts
~ objects form a strongly coupled unit
— parts depend on the composite
« life cycle is combined
(destroying the composite also destroys parts)
= replacement of part is (normally) not possible
~ however: different interpretation in tools

« Consequence: part (object) can only be in one
composite (structure)

composition

as a special cardinality in diamond is

association | FOAMUSang | 1 (default) or 0.1
—

dinalit,
4 o cardinality

3 (in this example
B (G e wrongly model
J8) G8 that the wheels

are never changed)

* 0.1

* Qualification “name” allows to select individual Person objects
« The same object can linked to different SocialGroup objects through different qualifications (names)

doe jackDoe:Person { object
diagram

BMWFans:

\ smith with objects
SocialGroup richardSmith:Person fmd quaIJrf:ed

" Software Enginoaring | RWTH Aachen

links)
johnDoe:Person
DoKoPlayers:
SocialGroup

12

26.12.2023

ied Associations

Generalization, Inheritance and Interface-Implementation

[socaorp [rame” T e
. 0.1 lehicle
todo +void start()
Worker - oA Task analyze
{ordered}
+ Qualified associations allow selection of individual objects from a set using a qualifier MotorizedVehicle
kWh enginePower
* Qualifiers can be:]
— integer interval (0 -.), if association is {ordered}
~ explicit identifier (attribute) of the target object (here: “name”) I T 1
Motorbike | | Car | [Truck |
+ Composition can also be qualified ‘ + int numDoors. | | + int numDoors |
* Qualification at both ends is possible
* Qualified association provides additional mechanisms for processing Axle
~ selective access, selective modification
n Softers Engnserng | RWTH Azchen S RWTH Sofvars Engraerng | RWTH Aschan S RWTH
Generalization, Inheritance and Interface-Implementation Generalization and Inheritance
interface marked with ——— ———— G lizati i lassificati .
stereotypes and italic names «interfacen eneralization uses a semantic (classification) view
Vehicle — hierarchical structuring of classes
“void start) ~ subclass is a subtype . MotorizedVehicle
— subclass describes a subset of the objects of the superclass
© N # kWh enginePower
interface /—\\ L abstract class — substitution principle void start()
. - i (name in italics) = instances of the subclass are usable, inheritance .
implementation A y A - int getPower
P MotorizedVehicle where instances of the superclass are allowed generalization g d

KWh enginePower
-]

superclass
P inheritance several subclasses

I T 1
Motorbike ‘ | Car ‘ ‘ Truck ‘

| +int numDoors ‘ | + int numboors |

2.4

s Software Engieing | RW

Inheritance is a technical mechanism used in OOP:
~ inheritance between pairs of classes
— attributes and methods are transferred
from superclass to subclass
— further attributes and methods can be added
~ method overriding is allowed

+ int numDoors

7 Softvars Engnoerng | RWTH Aschen S
=

Interfaces

« Interface are used in OOP ~

~ an interface describes the signatures of a collection of methods, [«intefface» |
that belong together. Vehicle

~ unlike classes -
+ no attributes (only constants) +void start()

~ interfaces may also inherit from one another

MotorizedVehicle

Abstract Class

. Clavssv‘es :mp\hem;nt interfaces #KWh enginePower
— similar to inheritance +void start)
* Methodological use: - int getPower()
~ structuring access for classes
« Interfaces are mainly for software coding in OOP
~ Reason: e.g. implement multiple interfaces in a class
” Softer Enginoaring | RWTHAachen S RWTH
=

* Abstract Class is used in OOP
- «interface»

representation: italic \\ Vehicle
= or «abstract»

+void start()

— builds a hybrid form between an interface and a “normal” class

~ implementation in form of method bodies and — S WolorzedVehicie
attributes are partly available —
#Time time
— abstract methods without implementation — + void start()

—_

— |- intgetPower()

~ but: no instances (objects)

7 Softvars Engnoerng | RWTH Aschen S
froey

13

26.12.2023

Multiple Inheritance Interface Implementation

When using generalization there may be
“overlapping” classes
Multiple classifications possible, e.g., the Seaplane

+ Mainly applicable for OOP:

Engine Electrical_Device

«interface» «interface»
+ An interface can extend multiple other interfaces

UML modeling permits
~ aclass inherits from multiple classes

+ Aclass can implement multiple interfaces ¥ interface extension

«interface»
Electrical_Engine
Model3_Engine

+ UML: a class can inherit from multiple classes .
interface
implementation

« Java does not,
— for technical reasons
~ but allows classes to implement multiple interfaces

« Kotlin allows this multiple inheritance
~ demands reimplementation of
move() in subclass Seaplane

n Softare Engineering | RWTH Aschon S RWTH B Softvars Enginserng | RWTH Aschen S RWTH

i

Kinds of Associations On the modeling power of CDs

Associations can model arbitrary graph structures

\:':nm Person
ame
N 0.1

- Set: use *-associations
Wore todo e - List use *-associations with {ordered)
‘E . {ordered} * as! ~ Map: use qualified association with attributes

~ Tree, Graph: use *-association with recursion

parts

Boat Famous: the composite design pattern

rticipates
Student - perpees Course
[Gamma et.al. 93]
builtFrom)
inheritance is not
System]]% 1oL © fnhert - - Composite: manages sets of components

an
+ Components may also be composites

between objects):
(l'wa c/asses,Jbut a)n/y one = Additional “Leaf” classes build the atoms

Object is instantiated

— Care: it is the responsibility of the software to ensure that
its objects form a tree (and not a cyclic graph)

o Software Erginearng | RWTH Aschen, S RWTH ® Softvars Engnoerng | RWTH Aschen S

=

Summary: UML Class Diagram Syntax

« Class diagrams have
~ classes with attributes and methods
— abstract classes, interfaces
~ inheritance, interface extension and implementation
~ associations with

i
= names, roles, cardinalities, navigation directions

~ variants of associations erface»
= composition Interface

P
MBSE

parts. 2. Modeling Structures with Class Diagrams

[Component
with attributes.

« qualified association 0.1 -
2.3. CD Modelling based on the UMLP-Tool
« Stereotypes and tags specialize individual model 1%
elements association

Prof. Dr. Bernhard Rumpe
Software Engineering
« Not discussed extensions RWTH Aachen
~ aggregation, association with > 2 partners, ..
http://www.se-rwth.de/

3 Software Enginearng | RWTH Aschen S RWTH
i S e

14

26.12.2023

Example “Social Network”

We Use a Textual Notation for CDs

.

- 1 1 . y . . .
Relationship invited “ass?“” sent « Aclass diagram thus becomes a text-file of this form and is stored in SocNet.cd
boolean isPending rofile . {ordered} «interface»
Date requested |;__initiated 1 String received : Post
Date accepted /intnumOfPosts {ordered}
i fint friends
1 - 1|classdiagram SocNet {
«enum» InstantMessage 2
RelationType Date timestamp 3 1 .
; I Iy class {...
FRIEND Person member Group "PYT9 String content M
FAMILY Date lastVisit boolean isOpen y
FOLLOWER String firstName Date created 5| class {...}
COLLEAGUE String secondName String purpose 6
Date dateOfBirth /int members PhotoMessage 7| enum {...}
int zip
String city 8 L
String country organizer +forganized 9| association ... ;
tagged |1 1 10
composition ... ;
double height " mpositl
boolean confirmed double width 12}
o Sofre Engineting | RWTH Aschen S RWTH - Sotvre Engineerng | RWTH Aschen S RWTH
Classes and Interfaces Associations (I)
. . CD SocNet) S : . CD SocNet
« Classes and interfaces look similar to Java code «intarfaces _ * An association in the CD: ‘ Person } Tember } Group ‘ ‘)
* but neither contain methods nor visibilities. Post
1|classdiagram SocNet { InstantMessage association member [*] Person <-> Group [*];
2 Date timestamp) / / \
3| interface Post; String content % [iaation directi
(navigation direction,
4 assoc. name g ’
5| class InstantMessage implements Post { el
6 Date timestamp; class name
String content; s
;) o multiplicity, can be [*], [1], [0.1], [1.*]
9/} + Navigation directions: ->, <-, <->and --
+ Optional:
~ Association name, multiplicities
o Sotwars Engneadng | RWTH Azchen S RWTH - Sotuare Engioeerng | RWTH Aschen S RWTH
e ogmos
Associations (Il) Composition
N CD SocNet -
« An association in the CD: ‘ Person ‘ Group ‘ \4 + Acomposition in the CD
1| organizer profileName. « Composed part (B) is part of the composition (A).
+Jorganized Composed object may only occur once in a composition
association [1] Person (organizer) + Examples:
<->
(organized) /[[profileName]] Group [*]; composition ¢l A -> B;
composition c2 A <-> B [*];
role names L~ califier composition c3 A [[theQualfier]] -- B [1];
q composition c4 A -- B [*] <<ordered>>;
composition ¢5 A -> B [1..*];
* Role names for navigation
* Qualifier is an
(1) a type (notation: [Type]) or
~ (2) attribute of the opposite class (notation: [[attribute]])
o Sotvars Engneadng | RWTH Azchen S RWTH @ Sotvrs Engioearng | RWTH Aschen S RWTH

15

26.12.2023

Enumerations

. Relationshi
+ An enumeration (enum) can be used as type: clationship CD SooNet
boolean isPending
; N Date requested
class Relationship { Dato bovapted
boolean pending;
Date requested; 11
Date accepted; «enum»
} RelationType
FRIEND
FAMILY
: FOLLOWER
enum RelationType { COLLEAGUE
FRIEND, FAMILY, FOLLOWER, COLLEAGUE, OTHER;
}

association Relationship -> RelationType [1];

0 Software Engincaring | RATH Aschen

SE = |™M

The full CD SocNet in textual form (1)

‘Appendix |

package dex;
import java.util.Date;

classdiagram SocNet {
abstract class Profile {
String profileName;
/int numofPosts;
/int friends;

class Person extends Profile [
Date lastvisit;

)
class Group extends Profile {
boolean 1sOpen;
Date created;
String purpose;
/int members ;

association member [*] Person <-> Group [*];
(1] person <>

d) [[profil

Name]] Group [*];

Softvars Enginserng | RWTH Aschen

Appendix i

The full CD SocNet in textual form (ll)

class Relationship (
boolean isPending;
Date requested:

CD SocNet)

Date accepted:

iation invited [*] Relatior

<> profile [11;

ND, FAMILY, FOLLOWER, COLLEAGUE, OTHER; }
association Relationship -> RelationType [1]:
interface Post;
association received [*] Profile <-> Post [+] <<ordered>>:
€ [1] Profile <-> Post [*] <<ordered>>;

<-> (zeplyTo) fo..11;
Class PhotoMessage extends InstantMessage;

association [1..%] Photo (picture) <-> PhotoMessage;

class Photo {

dout
double width:
)
Class Tag (
boolean confirmed:
)

association [1] Person (tagged) <-> Tag [*];
association [*] Tag <-> Photo [1];

0 Software Enginearig | RW

Hachen,

CD4A Context Conditions - 1

« Diagram Name
Must match file name
— First character upper-case

« Keywords
~ May not be used for types, e.g., “class’, “implements”

« Classes, Interfaces, Enumerations
Must be unique
— First character upper-case
Enum constants must be unique within an enum

« Extends / Implements
No inheritance cycles
~ Classes may only extend classes, interfaces only
interfaces
Only interfaces may be implemented

* Attributes
— Start in lower-case and must be unique
Type must be resolvable and (optional) initialization must
be type compatible
— Overriding attribute in sub class must be of same type as
the attribute in super class

o Softvare Engnonrng | RWTH Aachen

S o

CD4A Context Conditions - 2

* Associations
Source may not be an enumeration or external type
— Ordered associations must have a cardinality
greater than 1

« Types
Generics may not be nested
~ Usage of generics must be parameterized with the correct
number of type-parameters (e.g., invalid: Optional,

Qualified Optional<>, Optional<A,B>, valid: Optional<A>)
« Attribute of attribute-qualifier must exist in referenced — Derived attributes may not be initialized
class
- Type of type-qualifier must be resolvable
Names:

= Association names and role names must start in lower-
case

= Association names, role names and implicit role names
(lower-case name of target type) must not conflict with
each other or attributes in the source class

Composition

« Cardinality on side of the composite is [1] (default)
or [0.1].

Software Enginearng | RWTH Aschen

SE = ™M

Graphical vs. Textual Models

+ Models can have different representations:
e.g., graphical,
- textual,

— mathematical

« Best fitting form depends on the purpose of use.

aa
1

—a A b
e=-aA b

'A && B;

'A && 'B;

% Softvars Engnoerng | RWTH Aschen

S = i

16

MBSE &=

2. Modeling Structures with Class Diagrams
2.4. Software and Systems Modeling with CD itacen

pars

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

26.12.2023

Class Diagrams, their Semantics and Interpretation in the Real World

all possible
+ Class diagrams have “object stmctunzs”
~ syntax: boxes, arrows, triangles, text,
~ semantics (meaning) s intrinsic property: Phystal

a class diagrams describes a set of object structures.

« To be discussed:
~ interpretation of the “objects” in the real world

interpretation of
«+ Systems engineering has different interpretations than objects in the real world
software engineering
— object can be a physical thing
— vs. object can be data in a computer

+ Examples
~ cyber-physical objects: car, plane, spacecraft, factory, screw,
water, energy, .
~ data and events flowing in the system, ..
ings: you, me, Alan Turing, Mlckey Mouse, ..
~ abstract objects: plan, recipe, .

% Softare Engineering | RUWTH Aachon S
i

Class Di ics and their Interp! in Real World -2

— all possible
+ Given aclass “Car’. “object structures”
What does it describe? \ /@
+ Two standard interpretations: Mooy = Sem, -
~ the set of real cars (on the street) \ “ACE:

~ data about cars, as e.g. stored in production, at EuropCar, in liue EMW
atax office, or in Flensburg interpretation af
objects in the real world

These are describing different, but related things

+ During a development: the interpretation of a class
diagram may change (from the real thing to the data
about it)

Data objects obviously describe physical objects
— in the system development both interpretations may be used,
because both (data and cars) are present in a CPS

Stereotypes for Semantic Interpretation

+ Two standard interpretations:
~ the set of real cars (on the street)
~ data about cars, as e.g. stored in production

M: Sy > Sem . @
M: Sy - Sem .——

« The interpretation can be embodied in the model
using stereotypes

— «material»... elements, compounds, alloys, ...
~ «component»... machinery, ..
— «energy»... types of energy « More fine-grained stereotypes are possible, e.g:
~ «beingy... humans, animals, ... ~ «signal» ... data sent around
~ «datay ... for object structures, — «subsystem»
and other forms of data ~ itemn

~ By default: no such stereotype = data

® Softere Engineeing | RWTH Aschen w0 Softere Engineeing | RWTH Aschen S RWTH
Structural ing of C - Data Structure of a Course -
«abstracty
«component»
Motor
N buildYear DegreeProgramme | 4
start() - «abstract»
stop() name: String Person
e oot Sty
Battery responsible
c i i icEngil km range Module
KWh stateofCharge ame: Sting
om® cylinderCapacity : .
EnergyType fuelkind KW energyConsumption + charge(kW p) credits: Int l Grade : 1 pp— p—
powers Y title: String
* : Int
Rotor l l Course credits: Int
| Col [influences | Axle ‘
o e

26.12.2023

(Simplified) Data Structure of a Banking System -- Example

A iati and C 1in and System Structure

derived
Customer association Transaction «enum» CD BankingSystem)
P (- TransactionType
String firstName |+ —>/ « | String reference tvpe lonTyp
String lastName Optional<Date> executionDate JL; PERIODIC,
Date birthdate int value ONE_TIME;
String city 1 / boolean completed
String street outgoing] + +lincoming

String country
1

Account

/ String personelld

1 int overdraft
current balance
(orderecy|, incent
Share [checking | g ‘
|| double |

103 ‘ Software Engincaring | RATH Aschen

S e i

Modelling System Structure: Modelling Software:
« Composition: a natural concept in the physical world + Composition: used to build/compose software sub-

~ Widely used in physical CD'’s systems
« Associations in a physical world are of various forms « Associations used intensively
(but rarely used) — Object graphs know each other and interact along
— they can describe associations

« physical connections
= some form of interaction in the functional sense
= or even a development dependency (“same height as”)

— Data structures realize associations (see
Entity/Relationship models, SQL, ...)

« Generalization/Inheritance: for classification and for

« Generalization: as classification concept reuse of methods and as extension principle

«component»
Rotor

Coll influences Axle

o Softvars Enginserng | RWTH Aschen S RWTH

Modeling With Class Diagrams

Modeling With Class Diagrams -2

A comparison between modelling of systems and coding in software (implementation):

Interpretation in Software
(Coding in OOP)

object real physical item; and element of a defining class | instantiated from a class

UML CD Element | Interpretation in Systems Modelling

software class, database table,
acts as “blueprint” for its objects

storage for a value

class used as classification resp. type for objects

attribute property of an object

«abstract» Usable in a generalization hierarchy to mark that | abstract class
all objects are elements of subclasses (cannot be instantiated)

Interpretation in Software
(Coding in OOP)

inheritance generalization hierarchy: the elements of a subclass | generalization AND(!)

belong to the superclass too reuse of code from superclasses

composition geometric and functional composition of physical data objects composed to higher
objects to higher components / systems components (but OOP doesn’t
directly support composition)
associations physical relations (glued together, interacting, etc.) data connections and underlying
infrastructure for interactions
(method calls)

UML CD Element | Interpretation in Systems Modelling

«interface» N/A software interface (like in Java, C++) qualified rarely used models lists of objects and maps of
attribute visibilities | N/A defines access in software associations (key,value) pairs

- # identity “physical identity”, e.g. the sum of its atoms unique identifier to access an object
method denotes a function that a physical object can do | computational method from elsewhere

105 Sotwars Engneadng | RWTH Azchen RWTH 100 Sotvare Engiosarng | RWTH Aschen RWTH

SE--
General Duties of Class Diagrams Data in the Physical World
« Software knows types, such as « Ideal solution 1: ‘SIQ

Purpose of an UML CD In Systems | In Software int, long, double, float The Modelling language provides SI-Units &,

Modelling Modelling
(Coding in OOP)

Encapsulation of attributes and methods into a conceptual unit - ++
Instances as objects + ++
Type specification of objects (~ all possible objects) ++ ++
Extension (~ all objects that exist at a certain moment) ++ +
Characterization of the possible structures of a system ++ ++
(~ all objects that might exist at any time point in any system run)

Conceptual modeling of application field ++ ++
Implementation description (~blueprint) - ++
Class code - ++
(the translated and form of the i ion iption)

107 Software Enginearng | RWTH Aschen S RWTH

Sl-Units as types, such as “km/h”
— Sl-Expressions, suchas “3m/s *7min"
« Physical modelling prefers Sl Units, such as
km, s (time), A (Ampere), etc.
* Solution 2:

« Typing a data value appropriately is helpful to avoid Class diagram models “physical classes”, e.g.

- Modeling errors, like: “oyeicE e
— conversion issues Force i
ilegal additions (eg. 2km + 3 Volt) N abs Acurrent
~ illegal assignments (eg. v=3m2ls) RS dir V voltage
R? pointOfOrigin
s Sotar Engnoosg | RWTH Aachan

Connecting Data and Physical Classes

+ In a CPS model, we sometimes need to model
~ the set of real cars (on the street), AND
~ data about cars, as e.g. stored in production

« Associations between classes of the physical and the
data part of a system are allowed

— but they neither model data, nor physical properties X X
« We require the following:

« Such an is used as intellectual The data about a cars position and the real position
construct to allow bridging the worlds in specifications ~ only deviates 1m:
~ E.g. to describe relations between their attributes

~ inv CarData d:
| d.p - d.describes.pos | <1m

Note: Type “Position” is a type like natural numbers
(N x, N y) and can be used as data type as well as

(modelled in the Object Constraint L (OCL,;
real property type in the physical world. (modelled in the Object Constraint Language (()

109 Softare Engineering | RWTH Aschon S RWTH

MBSE

2. Modeling Structures with Class Diagrams
2.5. Further Aspects

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

26.12.2023

S e

Quality of a Class Diagram Model

« Quality is essential for usability, correctness and
other important model properties

« Quality is defined relative to its purpose:

~ Does the model fulfill its purpose?

Student

« Few main categories of quality issues:
~ A.Is the model correct?
‘«component»

~ B. s the level of abstraction good? Desk

— C. Is the model presented well?

(Readable, understandable?)

4 .
Leg H Screw l_" TableTop

« Techniques to ensure quality?
— E.g. peer review, syntax checks, prototyping

Quality of a Class Diagram Model

 Quality relevant questions should be refined:

+ Does it model the correct properties and functions of
all its object structures?
~ E.g. with respects to requirements

« Details:

inheritance: «abstract»
top-down Person
SOTA

Student

—
: move name attribute to

~ 1. Is it sufficiently detailed?
— 2.Is it not overly detailed?
~ 3. Shall it be complete or underspecified?

« Is it presented well?
~ 1. Readable?
- comments are appropriate
~ 2. Well arranged?
« inheritance: from top to bottom or left to right
= composition: most relevant classes in the mid
» unnecessary redundancy

P P
better top-downor. super class for proper encapsulat

- —
left-to-right ~ COEGTE
Desk
4 s 1
Leg \ screw TableTop

\
relevant classes
positioned centrally

" Sofaro Ergiraaing | RWTH Aschon S " Sotvare Enginentng | RWTH Aachon S RWTH
== =,
D uktur des Artefakt Example CD
@)
vonsh
" Sofaro Ergiraang | RWTH Aschon S RWTH e Sotvaro Enginentng | RWTH Aachon S RWTH
sonem o

19

26.12.2023

Class Diag and their Interp

MontiGem Code Generator from Class Diagrams

* Aclass “Car” has
« two typical interpretations:
~ the set of real cars (on the street)
— data about cars, as e.g. stored in production

« Many additional interpretations possible:

« In a system simulation
~ the «material» “Car” class gets another interpretation:
— it acts as surrogate for the real object
~ the «data» “Car” class remains unchanged

« In software testing
— the «data» “Car” class may be mocked

* In data bases
~ class “Car” becomes a data table

all possible
“object structures

interpretation of —
objects in the real world

.
M: Sy > Sem .

interpretation of __

objects in a simulation
(as a "model" of the
real-world object)

/@

s Softare Engineering | RWTH Aachon

S

* Multi b: ication for data

PROFIL

+ Developed using MBSE and lots of code generation
— Generate full application stack

« Starting point:
~ Class diagram modelling the application data

~ (+ some GUI models)
~ + Application functions

Frontend Backend Dalabase Screenshot of MaCoCo (Management Cockpit for Controling),
developed by AGe, PH, J, LN, SVa, GV, and others

e Softare Engineering | RUWTH Aachon

Summary: Class Diagrams for Structure and Data

Object- ion is igm of data ing close to

our perception of reality

~ classes model objects

— associations their relations

— inheritance allows for classification and for “code / property
reuse”

UML class diagrams can be applied to describe:

~ data in a system

— physical objects (components) of the system using
i NG

terialy and
— energy types «energy»
— types of fluids «material»
~ events in a system «event»

~ Context of a system, which then also may include humans

Class diagrams are also used to describe meta-things,
e.g. relevant for development tools, see SLE lecture

«interface»
Interface

composition

qualified association

Class
Type method()

qualificator

1
Type attribute

MBSE

3. Deriving Software from Class Diagrams
3.1. Code Generation from Classes

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

w Sotwars Engneadng | RWTH Azchen S RWTH S RWTH
[s
Using Class Diagrams Code Generation
. . all possible
* Aclass has many interpretations “object structures” « Principle: mapping the model to a programming language artifact

~ Physical: the set of real objects (car on the street)

~ Data: data about objects (car data stored in)

— Simulation: «material» objects acts as surrogate for the
real object

- Testing: «data» classes may be mocked
— Data bases: class becomes a data table

« Dependent on interpretation a class diagram is used
in different forms

+ One prominent form is: derive code from a class
diagram to be used in
— Tests, simulations and/or the real product

interpretation of _—
objects in the real world

interpretation of
objects in a simulation™

(as a "model" of the

real-world object)

M: Sy - Sem -

1o Software Enginoaring | RWTH Aachen

generated code

1 i
platform-specific code,
frameworks, operating system

R S —

hardware

|::> ‘ Even if no “automated” generator is available, the following transformations of UML to code are useful

120 ‘ Softvars Engnoerng | RWTH Aschen S

20

26.12.2023

Running Example: Online Auction System

Code Generation from a Class

« Asupplier online auction system

St 1 Fobruar 009 a 1622000 von 03 1200 HimisinerPres. 100001 %

(we developed for a company in the 90ties) | mons e et Zelprts: B29n%
10000 fenicee 108
* Characteristics e Ltorater, 15

~ One purchaser calls for the auction B R

~ Multiple bidders apply for a supply contract Mot 5400 0%
SamnstPr 56005
Wastozet 411

Bidding downward (the cheapest gets the contract) 7600
~ Real-time auction with duration of typically 2 h
s Rasatonsznt
%\&% Karenz o050k

« In the example:

+ Auction of the annual electricity needs of i Lotter Saneriortak. 3 ek
large bank in Frankfurt (value: millons)
" 0o T R e—
+ Result: 46% cost reduction wa | wm | ww | mm | vm 2w

Verbinung ok

Snapshot of the web applet in the browser

Auction

+long auctionldent
#String title
-Money bestBid

int numberOfBids

#incNumberOfBids()

2 Software Engincaring | RATH Aschen S RWTH

2 Softvars Enginserng | RWTH Aschen

S ey P

Code Generation from a Class

Alternative Code Generation?

Auction

Challenges for Generators:
« Diagram may be inconsistent
invalid data type, attribute name twice,

« Class diagram does not contain method bodies?
How will these be completed?

+long auctionldent
#String title
-Money bestBid

int numberOfBids

#incNumberOfBids()

Auction

+long auctionldent
#String title
-Money bestBid

int numberOfBids

#incNumberOfBids()

+ Possible requirements or additional features

— get/set methods for attributes.
serializability of objects
storing objects in a database table
« e.g., creation of the table as SQL statement
attribute access is secured by security manager
~ platform dependency of the code

« Different requirements lead to different generators

1| class Auction { « Diagram is incomplete 1| class Auction {
2| public long auctionIdent; — not all attributes,... 2| public long auctionIdent; — technique 1: parameterization of the generator
3 protected String title; 3 protected String title;
4| private Money bestBid; « Alternative forms of generation? 4| private Money bestBid; — technique 2: generating against an abstract interface:
5| public int numberOfBids; 5| public int numberOfBids ; providing a runtime system
6 6] (similar to the Java Virtual Machine)
7 void i 0fBids () { ...} 7| void i ids() { }
8|} 8}
= Sotwars Engneadng | RWTH Azchen S RWTH 2 Sotvare Engiosarng | RWTH Aschen S RWTH
=N ooty
Code Generator: Parameterization + Runtime System Code Generation using get/set-Methods
lass Aucti
class Auction { Auction

parameterized
Generator

runtime system

Generated code
with

inserted
parts b 8 [Manualyin
5 the project |
Generator Script written code

L
concepn ~*

basic structure of the generated code with
« parametrization

+ handcrafted modules

* ‘runtime system"”

" +long auctionldent
generator #String title

-Money bestBid
?int numberOfBids
#incNumberOfBids()

125 Software Enginearng | RWTH Aschen S RWTH

=N

126 Softvars Engnoerng | RWTH Aschen

SE

21

26.12.2023

Code Generation using get/set-Methods

class Auction { Aucti
private long _AuctionIdent; uction
- +long auctionident
generator #String title
-Money bestBid
. . . ?int___numberOfBids
d public long Ident() { return _AuctionIdent; } FincNumberomBigs) |
synchronized public void setAuctionIdent(long x) { _AuctionIdent =x; }
}
}
127 O — T S RWTH

Code ion using get/set-Method
class Auction {
private long _AuctionIdent; Auction
private String _Title; +long auctionident
private Money _BestBid; generator #String title
private int _NumberOfBids; Money bestBid
ized public 1 ionIdent() { ret: AuctionIdent; } t__numberOfBids
zed public long onIden return _AuctionIdent; s =
ized p String getTitle() { return Title; } #incNumberOfBids()
synchronized private Money getBestBid() { return _BestBid; }
ized public int ids() { return _NumberOfBids; }
synchronized public void setAuctionIdent(long x) { _AuctionIdent =x; }
ized p void setTitle (String x) { _Title =x; }
synchronized private void setBestBid (Money x) { _BestBid =x; }
synchronized public void setNumberOfBids (int x) { _NumberOfBids =x; }
ized void i ids () {
id ids()+1) ;
}
}
2 Sotvre Engineerng | RWTH Aschen S RWTH

Script for Code Generation

source of
transformation

+ Example:

$Class
Stags $Type Sattrib

¥

class $Class { ...
Stags SType Satrib;
}

result

*schema variables” like "$ tags" describe pieces of the source,
which can be used in the target again

« If necessary, further transformations describe the adaptation of individual parts
« Depending on visibility (“/", “+", etc.) , variants of these translation rule may be used
 Representation of these scripts in tools highly different!

MBSE

3. Deriving Software from Class Diagrams
3.2. Code generation for inheritance and associations

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

1 Sofrs Erginring | RWTH Aachon S RWTH S RWTH
s o
Inheritance Handling of Multiple Inheritance
« Inheritance, interface implementation and interface In the model:
extension can be mapped directly to Java A“ A B
+ Problem: one class inherits from several attrl atr2 discuse
superclasses:
<) w0s] (01
in UML, but not in Java
« Three solutions:
a) asuper class is converted to an interface
b) delegation instead of inheritance
c) combination of both
« Selection of the solution depends on the context
s =

22

26.12.2023

Handling of Multiple Inheritance

1-to-*-Association

In the model: Code structure:
A B A «interface»
attr1 attr2 attr1 1B
bar()
foo() {..} bar() { ..} foo()

+ Simple association 1-to-1 or 1-to-*
~ has navigation in one direction only

« Code generation described by this transformation:

$roleB
$ClassA [+ 71 $ClassB

s bObj 1 B
attr2 d
bar() $ClassA o * ClassB is not affected
bar() { ..} -$ClassB $roleB
— . h bl ibility
* But +$ClassB get$RoloB() as public visibility
~ two objects contain the new distributed state: +set$RoleB($ClassB b)
more complex
e oo |
-to--Association *-to-*-A iation with igation in both Di

« Navigation only in one direction —_—

)

$roleB
$ClassA $ClassB

4

$ClassA
-Set<§ClassB> $roleB
+Set<§ClassB> get$roleB()
+add$roleB($ClassB obj)
+removeSroleB($ClassB obj)
+boolean has$roleB($ClassB obj)

ClassB is not affected again

HashSet stores multiple references

the "get"-method provides an unchanged set

possibly other methods, e.q., iterators

+ Implementation in a decentralized variant
« In principle, management of the association on both sides as before
+ But: consistency requires additional infrastructure:

$roleA $roleB
$ClassA $ClassB

4

$ClassA
-Set($ClassB) $roleB

$Class is created analogously

modification methods such as “add” or “remove” also

+Set(§ClassB) getsroleB() change the links of the opposite side of association

+add$roleB($ClassB obj) using the auxiliary functions "addLocal” and
+removeSroleB($ClassB obj) “removeLocal”

+addLocalSroleB($ClassB obj) * the "get"-method returns unchangeable sets
+removeLocal$roleB($ClassB obj)

135 Software Engiearing | RWTH Aachen S RWTH

196 Softvare Engnonrng | RWTH Aachen S

-to--Association with Navigation in both Directions

Qualified Association

« Implementation in a centralized version with a Singleton

~ An association class manages links centrally
- Class $Assocname uses internally a relation navigable in both directions
« Access from $ClassA or $ClassB via one central object, i.e. the singleton

« But: more complex internal management structure

$roleA $roleB
SClassA (- > $ClassB

2

$roleA «singleton» $roleB

HashMap allows the realization of a qualifier

But: redundant storage of the qualifier in a HashMap and the target class
~ may require that qualifier value cannot be changed in the target

+ Access functions and modifiers can be offered in like the Map
If

~ but the Map must not be exposed itself
leB $ClassB
$ClassA | Squalifer | Srolel .
y 1| $QualiType Squalifier

4
+ $ClassB is not changed

$ClassA
-Map<$QualiType,$ClassB> SroleB

+Collection($ClassB) get$roleB()
+$ClassB get$roleB($ QualiType)
+put$roleB($QualiType q, $ClassB obj)

15 ‘ Software Enginearng | RWTH Aschen S RWTH

138 Softvaro Engnonrng | RWTH Aachen S

23

26.12.2023

Composition

Composition treated like an association

« But: (of the sub-object is not realized
* Possible solutions:
~A) must respect i

~ B) access signature is reduced, preventing sub-objects to be removed

F

$ClassA * $ClassB is not changed
final $ClassB $roleB
* modification of association is permitted only in the

object's initialization phase

$roleB
$ClassA 7 S$ClassB

129 ‘ Softare Engineering | RWTH Aschon S RWTH

Summary Code Generation from CD

+ This sections showed code generation from class
diagrams for several constellations

SclossA | St |-

Scesss |)

ok 1| S0wiType Saufer

~ variety of syntactic elements: many possible variants
~ some variants are optimal in various contexts

~ selection is not trivial!

+ The i shown can be as
i for manual i
+ But also: Code from class di: can Al $CassB ok
be automated
0 Sofvars Engraerng | RWTH Aschan

S o=t

MontiGem Code Generator from Class Diagrams

Multi-user web- for data

Developed using MBSE and lots of code generation
~ Generate full application stack

Starting point:
~ Class diagram modelling the application data

~ (+ some GUI models)
~ + Application functions

-~ 3 > —
[=] S
==~

Screenshot of MaCoCo (Management Cockpit for Controlling),
developed by AGe, PH, JM, LN, SVa, GV, and others

P
MBSE

4. System and System Engineering
4.1. System

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

Cybar-Physical System

i Softers Ergineetg | RWTH Aachen RWTH RWTH
SE- SE--
Definition System
A system is a set of entities, real or abstract, comprising
What is a system? 2 whole. (Wikiped)
H
An engineered system is a technical or socio-technical
system which is the subject of an SE life cycle.
Itis a system designed or adapted to
. s interact with an anticipated operational environment to
And how to engineer it? achieve one or more intended purposes while complying
with applicable constraints. (INCOSE)
Negbe
1 Softer Enginoaring | RWTHAachen RWTH e Softar Enginoaing | RITHAschon RWTH
SE-. SE-.

24

26.12.2023

Chall in Sy Enai ing

General observations:

« Mission complexity is growing faster than our ability
to manage it [...] increasing mission risk from
ir ications and i verification.

« Knowledge and investment are lost between projects
Ll ing cost and risk: ing the potential
for true product lines. (Bradley Drake, et.al.)

+ Knowledge and investment are lost at project life
cycle phase boundaries ... increasing development
cost and risk of late discovery of design problems.

System design emerges from pieces, rather than
from architecture ... resulting in systems that are
brittle, difficult to test, and complex and expensive to
operate.

+ Most major disasters such as Challenger and
Columbia have resulted from failure to recognize and
deal with risks.

General System Theory Distinguishes Various Types of Systems

s Software Engincaring | RATH Aschen

SE = |™M

Boulding (1965):

Checkland (1999):

1. Structures (Bridges) 1. Natural systems (Humans, Birds)

2. Clock works (Solar system) 2. Designed physical systems (Car, Robot)

3. Controls (Thermostat) 3. Designed abstract systems (Software)

4. Open (Biological cells) do not contain any physical artifacts

5. Lower organisms (Plants) ~ designed by humans to serve some purpose

6. Animals (Birds) 4. Human activity systems (Manufacturing, Politics)
7. Man (Humans) ~ Observable human activities

8. Social (Families) 5. Transcendental systems (Aliens)

9. Transcendental (Aliens) Systems beyond knowledge

[> ‘ In our lecture: natural systems, social systems, technological systems

45 ‘ Softvars Enginserng | RWTH Aschen

S o=t P

A System in its Context

Operational system context: all external elements through which the

system of interest interacts with through its boundary and interfaces

In the context of a system of interest:

Human actors (drivers, controllers, operators, ...)
~ Parts of the physical world (roads, weather, ..)
~ Parts of the cyberspace (data, services, ...)
~ Related systems

Closed systems: no interactions with environment
—All aspects of the system are within the boundary

Open systems: inputs and outputs with its environment

—Boundary defines how system parts interact with environment elements

Operational

- SystemBoundary .
interaces \

oSt |

|
sl j:{t;:;y\a
= S

\

Cyber-Physical Systems

1w Software Engiearing | RWTH Aachen

SE - |™M

Cyber-physical systems are engineered systems
where functionalities are emerging from the
networked interaction of physical and computational
processes. [BDS19]

« Comprise software parts and physical parts
Often in networks or the Internet
Popular applications:

CPSs are integrations of computation with physical
processes. Embedded computers and networks
monitor and control the physical process, usually
with feedback loops where physical processes
affect computations and vice versa. [Lee08]

Cyber-physical systems combine computing and
networking with physical dynamics. [Pto13]

g
Assistive (home) systems
— Automated vehicles
— Avionics
Manufacturing
Medical systems
— Offshore systems
~ Oil driling and mining systems
Robotics
Smart {home, garden, grid} components

148 ‘ Softvars Engnoerng | RWTH Aschen

SE ..

Consequences from the Definition of System and Cyber-Physical System

« CPSs consist of
— (multiple) software sub-systems and
(multiple) physical sub-systems
Humans can be considered part of a CPS

« CPSs provide functionality through the
interaction of
~ Software systems
~ Physical systems
— Software with physical systems
Physical with software systems
Humans with other CPS components

Cyber-Physical System

Consequences for the Engineering of Cyber-Physical Systems

1o Software Enginearng | RWTH Aschen

« Engineering CPSs requires expert knowledge from
~ Software Engineering (in several subdomains)

(in several

~ Electrical Engineering

+ Domains use different models that need to be
integrated in a holistic engineering approach
- Eg. i models of ing with

time abstractions in physical systems [BDS19]

Mechanics

150 Softvars Engnoerng | RWTH Aschen

25

MBSE

4. System and Systems Engineering
4.2. Systems Engineering

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

Cyber-Physical Systam

26.12.2023

What is systems engineering?

And how to manage SysE projects?

152 Softvars Enginserng | RWTH Aschen S

g is an Interdi

y Approach for the Realization of Systems

Definition (INCOSE 2016):

US Department of Transportation
===

Systems Engineering (SysE) is an interdisciplinary
approach and means to enable the realization of

successful systems.
cos

It focuses on

« holistically and concurrently
understanding stakeholder needs;
exploring opportunities;
documenting requirements; and
synthesizing,

verifying,

validating, and

« evolving solutions

while considering the complete problem, from system
concept exploration through system disposal.

INCOSE

S S

Y

A method decomposes the big problem
into a set smaller, manageable activities

159 Software Engiearing | RWTH Aachen

SE . ™M

and

Validation:

The assurance that a product, service, or system meets the needs of the
customer and other identified It often involves and
suitability with external customers.

Verification.

The evaluation of whether or not a product, service, or system complies with a
regulation, requirement, specification, or imposed condition. It is often an internal
process.

(Wikipedia)

Verification = Validation

154 Softvars Engnoerng | RWTH Aschen S
o

ization

g-acCh

- To be read at home or at wikipedia

(Wikipedia)

Issues such as requirements engineering, reliability,
logistics, coordination of different teams, testing and

Systems engineering is an i ary field of
engineering and engineering management that focuses
on how to design, integrate, and manage complex
systems over their life cycles.

At its core, systems engineering utilizes systems
thinking principles to organize this body of

1, maintainability and many other disciplines
necessary for successful system design, development,
i ion, and ultimate ission become
more difficult when dealing with large or complex
projects.

The individual outcome of such efforts, an engineered
system, can be defined as a combination of
components that work in synergy to collectively perform
a useful function.

Systems deals with work-processes,
optimization methods, and risk management tools in
such projects. It overlaps technical and human-
centered disciplines ...

Systems engineering ensures that all likely aspects of a
project or system are considered, and integrated into a
whole.

https:ffen wikipedia org/wiki/Systems_engineering

155 Software Enginoaring | RWTH Aachen

SE ™M

The i ip b Software E ing and Sy Engineering

« In the past, software...
— was embedded into machines
— controlled the behavior of a single machine
— engineering was part of systems i i

= Herman Hollerith's Punch Cards
= Firstuse: 1890 U.S. census
= Last use: 2012 voting machines

+ Consequently
~ Software was primarily developed by
programmers

« Today smart software connects and coordinates
— Heterogeneous Systems
— Humans
— Networks (Industrial Internet of Things)

+ Assembler code
* First use 1949
+ Basically direct memory

-> Significant change of impact

-> Systems engineering tries to adopts software) :’Arg;z?n;mg Ian;u;gﬁ

engineering methodologies * Object-oriented, functional, logical

156 Softvars Engnoerng | RWTH Aschen S
=

26

26.12.2023

Systems Realize Functions Related to Their Purpose

«+ From the definition: A system has one or more purposes with respects to its operational context.

- Consequence: Systems realize functions.

Functions of systems

~ Train - Mobility

- Car - Individual mobility, also: storage
— DaVinci medical robot - Remote operation

~ Freighter - Transport

— Smart phone - Communication, photography, ..

~ Manufacturing system - Produce goods

=

Geometry (i.e., physical shape): form follows function.

Systems thinking is based on functional i ion, design and il i ‘

Traditional Sy i ing is D:

157 ‘ Software Engincaring | RATH Aschen

SE.. ™M

Propulsion
J). o

Integration

Mission Planning

i =

158 Softvars Enginserng | RWTH Aschen

S e

Traditional Systems Engineering Practice

« Stand alone domain models/designs related via

~ Documents (often Word, Excel, ...)
« Operations concepts
= Natural language requirements
= Bill of materials
« Interface specifications (often tables)
- Deployment plans

~ Manual reviews

~ Informal communication
= White boards
« Design team meeting presentations
= Email

From Documents to Models

159 Software Erginearng | RWTH Aschen,

Documents often use natural language (ambiguous),
are not well-formalized (redundant), cannot be
checked automatically (incomplete), cannot evolve
automatically (static).

Systematic and efficient engineering requlres
b

« Current practice tends to rely on standalone
(discipline-specific) models whose characteristics are
shared primarily through static documents.
~ Models are there (implicitly, in engineers heads, in code)

. MBSE moves toward a shared system model with

structural, i physics- and sif
models representing the technical designs which
evolve throughout the life-cycle, supporting trade
studies, design verification and system V&V.

-specific models providing their

characteristic information in a mathematically

rigorous format.

~ Discipline models integrated by design; experts use
views.

150 Softvars Engnoerng | RWTH Aschen

SE ..

Model-Based Systems Engineering

Model-Based Engineering (MBE): An approach to engineering that uses models as an
integral part of the technical baseline that includes the requirements, analysis, design,
implementation, and verification of a capability, system, and/or product throughout the
acquisition life cycle.

~ National Defense Industrial Association, 2011

Model-based systems engineering is the formalized application of modeling to support
system requirements, design, analysis, verification and validation activities beginning in P §
the conceptual design phase and continuing throughout development and later life cycle INCOSE
phases. Sesg?

~ INCOSE SE Vision 2020

Opportunities of Model-Based Systems Engineering

181 Software Enginearng | RWTH Aschen S
=

« Acoherent set of consistent, related models ensure
integrity and enable traceability throughout the
development process

~ Enables top-down design decisions and drivers

— Automated change pre

« They capture information in a durable, evolvable
format

. They focus on |niorma||on mtegrahon rather than
1 allows for of artifact
ir istency/staleness

checking

— Automated tracing of (changing) requirements to
(changing) implementations

« These models provide the ability to codify institutional
knowledge using formal methods, allowing for reuse
and broad exposure

— Model checking on subsystem and system level
— Mitigation of loss of and i 1t

102 Softvars Engnoerng | RWTH Aschen

SE =

27

26.12.2023

Model-Driven Systems Engineering Literature
* Model-Based: * Model-Driven: + [Wik-SysE] https://en.wikipedia.org/wiki/Systems_engineering
— Models are used in some activities of development — Models even drive and guide the process + [SeBoK] SEBoK Editorial Board. 2020. The Guide to the Systems Engineering Body of Knowledge (SEBoK), v.

2.2, R.J. Cloutier (Editor in Chief). Hoboken, NJ: The Trustees of the Stevens Institute of Technology. Accessed
[20.07.2020]. www.sebokwiki.org.

* Models are + Models are + [BPO7] Pahl, G., Beitz, W., Feldhusen, J., & Grote, K.-H. (2007). Engineering Design - A \op
. y London: Springer.
- Additional artifacts ~ primary development artifacts « [BS08] Boardman, J. and B. Sauser. 2008. Systems Thinking: Coping with 21st Century Problems.
Used in i - * [Alu15] Alur, R. (2015). Principles of cyber- physlca! systems.
~ Used in isolated forms — used and reused across activities « [KK98] Koller, R., & Kastrup, N. (1998) F zur i i Produkte.
oy forceran achies enly - enavler for igh degree of aufomation PI:Z::)S} II::: E 2 gg:)g; g;bser physical systems Deslgn- e C 11th };227742‘ ium on

— Often used for communication, documentation, ... only Object/Component/Service-Oriented Real-Time Distributed Computmg

[FG13] Feldhusen, J., & Grote, K.-H. (Eds.). (2013). Pahl/Beitz Konstruktionslehre.

[BDS19] Broy, M., Daembkes, - Heinrich, & Sztipanovits, J. (2019). Editorial to the theme section on model-
based design of cyber-physical systems. Software & Systems Modeling, 18, 1575-1576.

~ drivers of reuse

~ Rarely processed automatically

~ enablers for agilty

[BS01] Broy, M., & Stelen, K. (2001). and of i ive systems. In phs in
computer science. New York: Springer.
16 Softers Engnserng | RWTH Azchen S RWTH o Sctvre Engineaing | RWTH Aschen S RWTH
Summary formulated as a Concept Model
4 has A
System | ——— | Context
describes -
e, realizes

(

i

1

|

| -
\ i ,

| Function

1

: | uese
activity

5. Function as Modelling Paradigm
5.1. Functions Specifying Systems Energy
| | ‘ ! ‘ | ‘ ‘ | ‘ | ‘ ‘ ‘ Material ;;yber-l
Design Test Di ysical
Syst
Architecture ‘ [Realization [safery- | | uction- ‘ Prof. Dr. Bernhard Rumpe Data_ ___ | System | /o
) | | assessment planning Software Engineering
RWTH Aachen

=)

development activities

+ Systems and their functions are described by models, which are part of various ‘

http://www.se-rwth.de/

165 Software Erginearng | RWTH Aschen, S RWTH
= S

RWTH
System Specificati gh Fi
cyber-physical
« Asystem defines a cyber-physical function ﬂymmgny
-t a physical and ional structure flows: input 1
— performs data, energetic and physical transformations
. . 7 ~ and is connected to its context through its interfaces Energy
What IS a fu n CtIO n H « Asystem function is described through its Material Cyber-
« input and output signature Physical
* types and forms of the Data System
- signals / data - -
- energy flow
- material flow j flows: output
system boundary
And how to describe it? + The functionality is mathematically

described through the
— relation between input and output

=

The concept of function is our first universal specification and construction principle ‘

e

167 Software Enginearng | RWTH Aschen S RWTH 168 ‘ Softvars Engnoerng | RWTH Aschen S

=

28

26.12.2023

System Specification through Functions -2

« Asystem defines a function

cyber-physical

System Specification through Functions -3

cyber-physical
function

function \ « The function based construction principle was e.g. flows: input
flows: input defined by Pahl/Beitz]
+ Advantages of using the function principle: \l — function paradigm originally as a mental concept Energy
Energy . Material
- A) ically very precise exists . « Later modelling of functions was added, e.
+ B) Function composition exists Material P?]Vbe"l ~ Mathematical differential equations for continuous Data_
. " ysical physical processes 2
C) Powerful modelling concepts Data N System [fHowss output
. M ible f flow: Streams are well fitting a ism to
any possible forms of flow: describe these functions [BS01] input | | output
Continuous (e.g., current, fluids, sand) vs. flows: output steams Function atreams = =
_ discrete (e.g., data, product it system boundary - . § — . o=
iscrete (€.g., data, product items) « Today, explicit modelling techniques are usable: (Component) . e e
« Many forms of 1/O relations: 3 . e,
May embody duration of the process ~ UML, SysML for discrete processes, data and physical
~ Internal state of the system structures, behavior of functions, ... —ne Sou
Delay of reaction Y ol
- Etc. gl
160 Softare Enginaring | RITH Aschen S RWTH 0 Sofvars Engraerng | RWTH Aschan S
Models describing System Functions Example: Simple Adder as a Software Function
i i y S . input signature:
« Asystem defines a function + Asoftware system defines a function with behavior natural numbers
+ Aspects to be defined in abstract, purpose fitting Data are discrete numbers arriving pairwise and shall be \ omx e
models: Energy added AN
Interface signature o . N;y’ Z=x+y 1
Material Cyber- This is a sufficient specification: z = x+y |
Intemal structure (architecture) Physical + It connects inputs directly with the output - out;:n{t
- Logical structure Data_ _ __ | System o)) v ! relation e ature
+ Geometrical shape ~ Observation over time shows a stream of inputs being
mapped to a stream of outputs
— Behavior (over time)
~ Here: we do not specify:
Interactions « Timing details
Assumptions about the context + Absence of values on x or y inputs
Here: Output is only dependent on current input
|:> Abstraction with dedicated models to master complexity is the second universal principle. ‘ (without any history)
=
Timing in the Simple Adder Orientation of Inputs and Outputs is Relevant
The real, time-aware signature
of this channel: x: Time — N « Asoftware system defines a function with behavior Nx
« Specification: z = x+y \ | & Nz
only describes the ,current behavior. N> Nx Add This specification: F: z=x+y Nyl x+y=z
« Software function acts over time: ™ & is an equality that does not distinguish input and output -
— Discrete sequences of inputs and outputs Ny | z=xty ~ Semantically equivalent alternatives: N
- . oz=x+y y+x=z Nz Ny
« Assuming we have ‘model of time” Time . P " X=z-y 2'y+x = 2'z-x X Diff
+ The real and complete interface: The real, time aware specification: x+y=z
“xy: Time-N : vteTime: zZt]=x{t] +y[t] — + Flow direction of signals however distinguishes what Nx
27 Time >N is input and what is calculated/produced: Nz Spread
. Sumof x and y (Function Sum) x+y=z Ny
. The time ification is: Tme| 0 1 2 3 4 _ Difference between z and x (Function Diff)
CvteTime: z = X + yi] : : 2 3 0 6 1 Or also: an underspecified spread of z to x and y
P P — Function Spread
3 3 2 (pread)
« Which is only abbreviated by: z = x+y 4'7 S) 5 N
« Time is so intrinsically present in all specifications: z 3 6 3 8 2 |:> Input and oulpug is distinguished in thev §|gnvature of a function;
we often omit its explicit notion fime not necessarily in the body of the specification
=

S

29

26.12.2023

Forms of Denoting Formulae

+ Unfortunately math and programming choose to use
different forms of notations
~ (for a variety of reasons)

* We are aware that:
Math uses indices e.g. A = (Fi, vi)
Math uses SI-Units, like N, m/s (N = newton, force)
PLs use types, records, classes, e.g. Newton
We mix both at our convenience, e.g.:
tuple type (N F, m/s v) and selectors, like a.F, a.v

is

Math encodes “types” in variable names, e.g.
always force.

PLs separate types and variables e.g. “Newton f:

~ PLs often use capitals for types, lower cases for variables
— Also common “f: Newton” and short “N

+ Math uses single letter variables (incl. Greek letters)

« Math style model of the function

(NF, m/sv)a (NFm/sv)b

Converter(n)

+ Programming style model of the same function

component Converter(double n) {
in (N force, m/s velocity) a;
out (N force, m/s velocity) b;

laws:
b.force = n * a.force;
a.force+a.velocity = b.force+b.velocity

Example: Electrical Circuits

Circuit and chip design relies on binary electrical
© current.

Logical AND is specified as

—0=ijAl

Half adder is specified as

~ camry=anb

~ 2*carry +sum=a+b

and implemented using an AND and two NOR

R-S-Flip-Flop includes a feedback loop:
~ this allows to store a state (a bit)

logical AND

Half adder:

logical NOR

R-S-Flip-Flop (incl. feedback)
delay

+ PLs use self-explanatory names and use ASCII }
s Softare Enginaring | RITH Aschen S RWTH e Softuare Engserng | RWTH Aschen S RWTH
o= it
Example: SumUp as Software Function with State Example: Store as a Function to Store Material
« Building sum of arriving numbers: SumUp * Input:
~ Data are discrete numbers and shall be summed up ~ Material arrives as discrete elements Bz
~ Intemal state: the sum built so far init Ns=0 — Store releases arrived material on Boolean request . Materialy
Spec: s'=x +s Material x S

~ We use an internal variable
+ N sinitialized with 0
~ And as specification this invariant
(also readable as update function):
= s'=x+s A y=s
~ It relates
- input x
- outputy
- the current internal state s
- and the next internal state s’

Y= 8

3 0 6
0 2 5 5 11
y: 0 2 5 5 11
time

relevant to fulfill the function.

= |

In software: The internal state contains all relevant information about the history that is ‘

m ‘ Software Engiearing | RWTH Aachen

SE=.|™M

~ Internal state: the material stored so far
= List<Material> s initialized with []

— And as (not fully complete) specification the invariant
false = s'=sttx A Y=g
true A s'#[] = s'=rest(s) A y=first(s)

physical contact areas,
.9, door or a counter, valve, efc.

« Again next state s’ is related to current state s HEE)
+ Extensions: z f f
1 ~ Use part number to retrieve specific elements y:
~ or pickup times s time
~ or bags (multisets) instead of storage lists -
m Sotvers Engooorng | RWTH Azchan RWTH

S i

Example: Dataflow and Material Flow in a Factory

« Companies,

business processes,
production processes:
~ Can be specified as functions

Factory ABC

* Production takes time:
~ Material is processed,
— Material is stored, etc.

« Company business processes
— Use history for prediction

— Use data to produce new data, {(data))

work directives, etc. production-

((material)y planning

raw materials

_ Sales
{(data)) pricing

{(data)) orderbook

{(datay)
output
figures
(({material))

i products
Production

e Software Enginoaring | RWTH Aachen

P
MBSE

5. Function as Modelling Paradigm
5.2. Underspecification

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

Energy
Material Cyber-
Physical
Data System

S =ty

30

26.12.2023

* Medium
device:
~ It may transport a signal (data) or may drop it
~ This behavior is nondeterministic in nature.

an unreliable

~ For simplicity: Medium does not replicate, alter or delay
data, nor does it switch the order of data

-~ Specification dout =din v dout=¢

— Remarks:
« the fully transmitting medium is included
» the disconnected medium is also included

Data din

Data dout

some
alternatively
possible
output streams

time

1 Software Engincaring | RATH Aschen

The Underspecification Principle

+ Deterministic and fully specified relations are
normally not achievable
~ Delays happen
~ Energy fluctuates
- ion it lack of i

+ Underspecification is the ability to describe the
desired range of allowed behaviors
(instead of a single, determined behavior)

+ Advantages:
~ Easier to specify
— Can be well combined with variant-building and
methodical refinement

Energy
Material Cyber-
Physical
Data System
- -

|::> ‘Comrolled, explicit underspecification is the third universal specification principle ‘

0 ‘ Softvars Enginserng | RWTH Aschen

S e

Example Automata:
Nondeterministic Automata

[Repetiton |

« Firstof all:
~ Nondeterminism and underspecification are related
(almost the same)

To introduce nondeterminism, we adapt the
automaton syntax to:
~Sy=(S, I, SOCS, FES, 8:Sx1- 0(S))
~ Set of initial states SO
— Transition relation & instead of function:
& can now offer multiple transitions (|5(s,i)| > 1 allowed)

Semantics domain uses again the set(!) of words
over I:
Sem

Semantics mapping: the set of accepted words with
path to a final state:
M@A) ={wel|&(S0,wnF#0}

! o7 [tomai
- Finite automata come with a rich theory "Ci;
and well-known techniques: e

- Powerset derives a

- Error completion
+ e~ Transition elimination
«+ Equivalence checks (used e.g., by model checkers)
+ Mapping of regular expression to automata
* Which includes various forms of automaton

composition (n, U, -, sequence .o., Kleene closure ")

+ Theory helps to define semantics as well to efficiently map
the to an i

18 Software Engiearing | RWTH Aachen

SE-.|™M

Example Automata:
=2 refi and

[Repetiion|

* Nondeterministic automata
© Sy=(S, I, SOSS, FCS, 6:5x1- p(5))
.« Sem=1
+ MA)={wel|5(S0, w)n F =0}

* Automaton Ais well defined:
i.e. it accepts something
— Syntactic sufficient criterion:

« 35 €S Vn: Jit Spyq €8(sy, D) Ay ESOAS, EF
~ Can effectively be checked using transitive closure

M(A) = 0

* Automaton Ais refinement of B:
— i.e. Ais more deterministic than B
~ Can effectively be checked using a simulation relation

(see model checking)

M(A) = M(B)

« Automata A and B are consistent:

7) (oo
o s

2

M(A) N M(B) = @
~ i.e. the do not specify conflicting properties of a component
~ Can effectively be checked using an intersection automaton

+ We recognize:
+ Automaton theory demonstrates that:
© M(A)NM(B) = M(ANB)
+ i.e. composition n of automata is conform to individual
mapping and composition of semantics

|
+ Set theory s an excellent vehicle to understand consistency,
underspecification and refinement

14 Softvars Engnoerng | RWTH Aschen

SE .

Example: Underspecification in Math

The mathematical equation is a perfectly
deterministic tool
-a=b

Equation systems determine solutions ...

Non-injective mathematical operators allow several
solutions:
S =

Logical “or” introduces alternatives:
-a=bva=2b

« Ranges can be specified:
~b<a nas2b

Precisely determines a if b is given (and vice versa). ' * Functional dependencies can be extended with “small

~+ Small unknowns are convenient, but the boundaries need to

Approximate equalities use “small” "unknowns" c:
- a=b+c

"unknown" functions c:
- f(x) = g(x) +c(x)

be clear, e.g.,
- Which ¢, ¢(x) is “small” enough?

- Or what properties does c(x) have? Continuous?
What about its derivates (small changes only?)?

- Does a stochastic distribution over c make sense?

185 Software Enginoaring | RWTH Aachen

SE--

P
MBSE

5. Function as Modelling Paradigm
5.2. Streams to describe Functions

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

Energy
Material Cyber-
Physical
Data System

SE=

31

26.12.2023

Signature of Input and Output of a Function

Interactions on Channels as Streams of Elements

« The signature of a function describes the forms of

+ The signature of a function describes the forms of

interactions of a system component with its interactions of a system component with its
! Energy ! Energy
environment. environment.
. Material Cyber- _ N Material Cyber-
« Interactions are broken down to streams of elements, Physical * The signature of a function is defined by Physical
which describe the time dependent flow and can be Data System Data System
of the kinds ity e Aset of channels ----x ---
data, + Channels are directed as inputs or outputs
— energy or
material « The Interface of a Cyber-Physical System is defined — Achannel is of kind data, energy or material .
. -y Achannel has a type (e.g., data type, energy or material
) . . through its function signature type)
« Interactions are organized through input and output Pe)
channels. The streams of elements are time eq. N\~
« Continuous (or piecewise continuous) or Tme
« discrete: i.e. event based
I:> The concept of stream is our fourth universal specification and construction principle —la—lu—ia—l—l—w’"e
Behavior of a System All Variants of C Models (;) and their Timing
- - - Underlying Kind of Stream Mathematical & d a b b ";’g,m
« The pehavwor of a system is defined as a f_unctlor) or Topolog) Definition /
relation on the streams of element according defined Ener discrete event stream v AR B R N A
the system signature "9y /,> - W -
- - 7 o d I ime
- — - Material Cyber- discrete timed event stream M
— Given the channels and their kinds a relation between Physical discrete time slice stream NoM (= M)
input and output can be defined Data System = R ¢
—_———— -——— discrete time-synchronous stream | N - M
— Time is directed and time warp doesn't exist, i.e., - " -
output of a channel depends only on discrete time-synchronous N->M e
- the history of the input optional stream =Mu{}
- and the (almost) current input discrete signal stream N— (M) _-/\/__,'\/
1 i e
~ Afunction may have state to dense hybrid stream R, >M e R,
= remember its own history (i.e., data) or dense dense signal stream R, = ©(M) b b
« to store products (i.e., material or energy). " 2 4 § 0
superdense super dense stream R, —>M — ime R,
N = natural numbers; R, = positive reals; M =messages; {(M)= powerset over M; M= discrete streams (i.e. finite and infinite lists) over M
" dense streams are typically continuous almost everywhere
™ Softere Engioaring | RWTHAachen S RWTH 10 Sofvars Engosrrg | RWTH Aschan S RWTH
e ogmos

Model Based System Specification - Functional View

Model-Based System Specification — Function and Geometry View

« Afunction F specifying a CPS component has a PR

complex signature:

Many channels : ingoing and outgoing
— Channels carry different kinds of elements
~ Flows may be discrete, dense, and even

F: CPS
Function

— Time is relevant and it is directed:
= Reaction is not really immediate (but can be very quick)
= No time warp, no undo of emitted reactions

— Component may have
« delay in reaction and
- store information, energy or material for future
reactions: components have encapsulated state

~ Underspecification allows many possible behaviors

Formally F relates its streams Me

(i.e. one of Mo , MY, N — M*, ... R, - M) of
input channels Iy, 1,

~ and output channels Oy, O,

O,

« as set of mathematical functions:
SF C 1EXIE X o X 1T 5> 07X 07X ... X OF
that obey timing restrictions

191 Software Enginearng | RWTH Aschen,

« ACPS system (and equally a CPS) are
defined by a F:CPS
functional view F and a Function
— geometric view G
G: CPS
+ Ageometry defines an area in space that the CPS Geometry Te
takes

~ Physical dynamics include a behavior over time, possibly
dependent on input channels (called interactions)

— Physical effective surface acts as interface of the
geometry (Dt: “Wirkflache™)
Material properties are internal, only the surface is visible

+ Underspecification as development principle

=

ACPS is described by a functional and a geometric view. Both share their CPS interface. ‘

S fronety T

32

26.12.2023

Stereotypes for Components and Interaction Channels

We in this course define the following:

for functions

~ «component» machinery,
= «system» machinery that is “complete”

~ «being» humans, ...

for function channels:

« Principle picture:

« isrefined to:

Summary: Universal Construction Principles 1-3 (more are coming up):

1: The function concept is a universal specification and construction principle

— - Functions are a well-known mathematical construct that allow us to model system functionality precisely
~ Functions (and related math structures, such as continuous or discrete time, abstract data types) are the connection

between systems thinking and mathematical foundations.

2: Abstraction with dedicated models to master complexity is the second universal principle.

3: Controlled, explicit underspecification is the third universal specification principle

~ «materialy elements, compounds, alloys, ...
« «fluid» c_;cn(inuously flowing material, ceneray» «energy» ~ 2 Underspecification allows us to model absence of information or uncertainty in analysis, variability of the products,
typically not countable 9y —_ degrees of freedom when customizing a component and also behavioral nondeterminism that occurs during system
’ (water, gas, sand) «fluidy fluidy operation.
. «item» discrete physical items, e.g. cars
- Cyber- i . " PP " -
energy» types of energy «tem» 21 &1 | th/sic:al «item» = 4: The concept of stream is our fourth universal specification and construction principle
~ «datar for data objects, basic data (e.g. int) «datan ‘ System «datan ~ > Streams allow to describe the “flow’ of elements (material, data, data) through input and output interfaces over time.
= «eventy for discrete data that triggers | i Dense, even continuous, or discrete streams allow to model all forms of possible behavior of a function.
behavior «signaly EAES Y «signal»
~ «signal» for continuously flowing data
10 Softare Enginaring | RITH Aschen S RWTH 104 Softuare Engserng | RWTH Aschen S RWTH
F ion-based Uni I Specifi and Construction Principles Summary defined in a Concept Model

1. The function paradigm is the foundation
~ Clear boundaries, clear input/ouput signatures

complexity is the second universal principle

3. Controlled, explicit underspecification
range of allowed behaviors
4. The concept of stream

inputioutput behavior

2. Abstraction with dedicated models to master

— Explicit, abstract models focusing on dedicated aspects

— abstraction, variability, ability to describe the desired

- as mathematically precise, time dependent model of

«energy» «energy»
—

«fluid» AL «fluid»

«item» PR R Cyber- aitemn»
Physical o

«data» L System «data»
i —

«signaly A «signal»

described by

. ‘Amuts, outputs

hV / characterizes
h;

o
A

Continuous Discrete
Stream

Stream

|
-]

=

« Functions embody a signature consisting of typed channels

... more coming
s o
Specifying Function Behavior with Statecharts
« Acyber-physical function
~ needs a behavior specification Energy
- ~ behavior maps input flows to output flows
Material Cybgr—
« Statecharts describe discrete behavior Z"y;f:'
MBSE ~ event-driven sequence Data__ __ | ¥ .
- finite state space
6. Discrete Behavior Modeling with Statecharts — discrete transitions caused by external events
9 induce state changes and event emission behavior
6.1. Examples specified by
« Observations:
Losel Crate Insice — Data as well as materialized things are discrete Energy
Prof. Dr. Bernhard Rumpe Wateg for ~ Energy and fluids are not
. " Crate. Material
Software Engineering Locrse « How and when to use Statecharts?
RWTH Aachen « How to interpret a Statechart in CPS? Data_ _ __ | .
http://www.se-rwth.de/
S RWTH 10 Sotvrs Engioearng | RWTH Aschen S RWTH
== =

33

26.12.2023

Statecharts

Goal is the description of
object or component behavior
based on their internal state

Statecharts extend automata theory:
~ hierarchical states,

~ actions in transitions and states,

~ explicit logic formulae as conditions, ...

« History of Statecharts
— Statecharts introduced by David Harel in 1987
~ incorporated in many modeling languages
~ many variants developed
~ part of the UML from the beginning

Filing

orme |

Watng for
Crale

Lot

19 Softare Engineering | RWTH Aschon

ts in

« Statechart for the “process” of an auction:

state

marker for Statecharts

(

AuctionOpen \

hierarchically decomposed state

\»

AuctionReady

marker for start and end states

L_) finish()
@<—Aucti hed!

transition with
method call

Auction-
RegOpen
Auction-
Extended

state name

startExtension()

20 ‘ Softvars Enginserng | RWTH Aschen

Example: RS-Flipflop as Statechart

« The functionality of an RS flip-flop circuit
~ Modelled by its internal state

* Internal state = the stored bit

* Observations:
~ Processes two (synchronous) inputs at once
~ Start state initially unknown

~ Output Q only depends on internal state
(= Moore machine)
« this introduces delay in its reaction

— Statechart is incomplete:
= R:1, Si1is not considered

10/1 01/0

Legend:

1071

is shortcut

for

01 "
0071 R:1,8:0 /Q:1

symbolic
picture

@
5}

RS-Flipflop

201 Software Engiearing | RWTH Aachen

Example: Car Wash

+ Acar wash
— one car at a time
~ washing only if chip is entered

« Observations:
~ real physical things come in and out
(cars, chips)
~ Functionality of “cleaning” is not actually modelled in its
behavior (i.e. how to mathematically describe a car “is
clean”), but the process around it

~ Abstracts away from many details, which?

Statechart

cChip/

washing]

2 Softere Engineering | RWTH Aachen

Example: Car Wash — more complete

A car wash
~ one car at a time
— washing only if chip is entered

Some additional behaviors:
— Car leaves without wash
~ 2™ chip is used to wash same car twice

Still missing:

~ Emergencies

— Washing in steps ...

~ Wrong chip

— Chip arrives without a car

« Refinement: Adding behavior, where nothing was
said before

Statechart

cChip/

i e
. Car- a @
Chip ¢, Wash —

203 Software Enginoaring | RWTH Aachen

MBSE

6. Discrete Behavior Modeling with Statecharts
6.2. Underlying Automata Theory

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

Filng

orme |

Grato Insice
Watng for
Grate

Joorte

SE .

34

26.12.2023

Recognizing Automata

+ Recognizing automaton (S,1,8,s0,F) has

Examples of Recognizing Automata

—— multiple

P : . 0-9 transiti
« (also: nondeterministic, alphabetical Rabin-Scott 00 ransitions
Machine (RSA)) transition with a
marker for input symbol O
~ Finite set of states S initial state o
- 'S”Dt“‘f?'D,Ta?e: . ! oes () N0 incomplete transition relation, because
et of initial states s0c — . f
< AN comma is not accepted in this state
- Setof final states Fcs n L=® ! prea i
Transition relation ScSxl'xs D !)
/
where initial state marker for 0-9 0-9
e the istent input in final state 0.0 . 00
spontaneous transitions o—(m n & (P Q)
CE=lofe n \ o
— All sets S, I, s0, F are non-empty and finite . S
e-transition —__7 "~ non-deterministic
because of resp. 5
25 Softare Enginaring | RITH Aschen S RWTH 206 Sotvre Engineerng | RWTH Aschen S RWTH
Example Automata: Example Automata:
Nondeterministic Automata A refi it and istency

« Firstof all:
Nondeterminism and underspecification are related
(almost the same)

To introduce nondeterminism, we adapt the
automaton syntax to:
—Sy=(S, I, 0SS, FCS, 6:Sx1- 0(S))
Set of initial states S0
— Transition relation & instead of function:
& can now offer multiple transitions (|5(s,i)| > 1 allowed)

Semantics domain uses again the set(!) of words
over I:

Sem =1

Semantics mapping: the set of accepted words with :
path to a final state:
MA)={wel| 60, w)nF=0)

o
. v ol
- Finite automata come with a rich theory Py
and well-known techniques: (2}

- Powerset derives a

+ Error completion
+ e~ Transition elimination
«+ Equivalence checks (used e.g., by model checkers)
+ Mapping of regular expression to automata
* Which includes various forms of automaton

composition (n, U, -, sequence .o., Kleene closure ")

+ Theory helps to define semantics as well to efficiently map
the to an i

207 Software Enginearig | RW

Hachen,

* Nondeterministic automata
, 1, S0CS, FCS, 6:5x1- 0(5))

wel | 8(S0, wynF#;}

 Automaton Ais well defined:
l.e., it accepts something
~ Syntactic sufficient criterion:
= IS ES Vn: it Sppq € 8(sp i) ASg ESONS, EF
~ Can effectively be checked using transitive closure

M(A) = @

+ Automaton A is refinement of B: M(A) = M(B)
— le. Ais more deterministic than B
Can effectively be checked using a simulation relation
(see model checking)

o 1) [Putonston)

a
BE

« Automata A and B are consistent: M(A) n M(B) = @
~ le. the do not specify conflicting properties of a component
Can effectively be checked using an intersection automaton

+ We recognize:
+ Automaton theory demonstrates that:
© M(A)NM(B) = M(ANB)
-+ le. composition N of automata is conform to individual
mapping and composition of semantics

28 Softvars Engnoerng | RWTH Aschen

Readiness-to-Fire, Semantics

« Atransition is ready to fire if the system is in the
source state and
the input character arrived and or the
~ transition does not require an input character
(ie., it is spontaneous).

« The semantics of a recognizing automaton is the set
of inputs (words over E), for which there exists a path
from a start state to a final state

«+ But: pure recognition is too weak for behavioral
description
therefore, extension of the machines to describe output

Mealy machines have output on transitions
Moore machines have output on states

is shortcut

for
R:1,8:0 / Q1

00/1

B: R RS-Flipflop B: Q

209 Software Enginearng | RWTH Aschen

Mealy Machine

+ A Mealy machine
« (S 1,0,s0SS, FCS, 8§:Sx1- p(Sx0))
includes recognition automaton (S, I, s0, F, 8)
and new:

output alphabet O

and transition relation & is extended with output

Semantics of Mealy machine is a relation between
input and output words (I* x O*):
the “behavior” of the automaton that is exposed to the
outside

Mealy machines can describe functions on discrete
in/ouputs

A 00/0 Statechart
0

is shortcut

for
Ri1,8:0 /Q:1

B: R RS-Flipflop B: Q

210 Softvars Engnoerng | RWTH Aschen

S =t T

35

MBSE

6. Discrete Behavior Modeling with Statecharts
6.3. Application in Software and Systems

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

Watog for
Crate

iote 1

rocate

SE=.|™M

26.12.2023

Example Automata:
Semantics Definition using Math

Mealy machines are a well-studied theory
b o " v

|

chars

Sigas, |
Things

etc. o

(,D M: Sy - Sem ./\.

D@

Do

« Application in practice requires an interpretation in
the real world
» What s a state?
+ Whatis an input symbol?
» What s output?

interpretation of
inputs I in the
software world
And the real world

Range of possible interpretations
- ASCII characters (e.g., in parsing)
Method calls (in object-oriented software)
Signals (e.g., in communicating distributed systems)
Physical things
Electrical states (0, 1)

2 Softare Engineering | RUWTH Aachon S

Application of Automata Theory in Object Oriented Modeling

« Possible interpretations of states, transitions in 00?

~ State space defined by attributes of an object is in
general infinite vs. finite set of states in the Mealy
Automaton

~ State change through method call, asynchronous
message via CORBA, timeout, ...?

~ What is the output?
~ Whatis a spontaneous transition in 00?

~ Initial and final states in 00?

)
4 M: Sy > Sem .
] /\‘ SM% l!
Things

interpretation of
inputs [in the
software world
And the real world

UML Interpretation of Statecharts in Software

State of the automaton = set of states of the object

A=

Initial state = set of object states that occur
immediately after construction (new ...)

interpretation of
inputs I in the software world

Final state does not matter, because in Java
garbage collection “terminates” objects

Input characters = method call including arguments

Output character = result of a method execution
~ Includes attribute changes, other method calls

« Transition = execution of a method body

Distinction between diagram state and object state!

™ msy o sem .

Final state normally not applicable to physical systems

+ Input = incoming discrete things and signals in a
machine

Output = modified things as well as computed answers

+ Transition = operation of the CPS transforming the input
to an adequate output using and adapting internal states

« Statecharts are useful in many domains. But the
following the examples usually belong only to one
domain. > Let’s keep this in mind! it ol

Things

interpretation of
inputs 1 in the real world

Statechart
Uncleaned oChip/
Car inside

le—"7 o:Car
:Chip,

Car

/oCar cleaned

215 Software Enginoaring | RWTH Aachen

finite

21 Sofvas Ergmerg | RWTH Aacnen S RWTH 2 Sofvs Ergmerg | RWTH Aacnen RWTH
=N e
SysML Interpretation of Statecharts in Cyber-Physical Systems Relationship between Diagram and Component States
bar P foo
« State of the automaton = e o animated
equivalence class of states of the component i) / chars
M: Sy - Sem = nF—@® .
« Initial state = component states that occur at start > \ bar diagram al elements are
/ R, |

interpretation of diagram elements

N
bar (1)

representation of a portion of
the state set of a component
and some of the typically
infinite many transitions

set of component states
assigned to m

set of comporent states
assigned to n

20 Softvars Engnoerng | RWTH Aschen S
=

36

26.12.2023

Non-Determinism (N.Det.) in the State Machine

If two transitions are ready to fire:
Then the user of the system knows, that one of the transitions will be taken.

Decision which one can
a) Depend on missing details of the model states
(= N. Det. by abstraction: underspecification)
a) Left up to the developer
(= N. Det. as a draft of freedom: underspecification)
b) Determined at runtime (= N.Det. in the system)

« Decision may be left to the developer or system
~ This makes no difference to the user!

Clarification of the interpretation:
— N. Det. of the automaton as a concept for underspecification!

Principle of underspecification: If no information is given, nothing is known!

2 Software Engincaring | RATH Aschen S

Epsilon Transitions

« ¢ - transitions are “spontaneous” transitions x/1
- Possible interpretations in the system/world o &/2 @
1. timer has expired and causes transition
. automaton is incomplete: a message leading to this transition was not modeled, but effect is visible due to
change of state
. the transition is a consequence of a previous transition and is executed automatically by the system.

N

w

* Notes on the variants
1. Requires concepts to express this in an underlying programming language
Allows for abstraction, but prevents code generation
Allows to break down long actions in sequences, branches and even iteration of a method body into
individual steps
~ notational comfort

«nN

21 Softvars Enginserng | RWTH Aschen S
i

Incompleteness

« In the current state “p” no transition is ready to fire for input “y”

+ Possible interpretations
1. ignore: do not execute any action, do not change any state
2. chaos: arbitrary reaction allows change to arbitrary state and an arbitrary action
3. error state is entered (and left only through return message)
4. error as the " not ur

« 1, 3, and 4 are suitable for implementation: code generator

«+ Option 2 useful for Statecharts in a specification

~ Chaos allows robust implementation by subsequent design decisions (adding of transitions)

~ Chaos = no knowledge = underspecification

x/1

@/“(D

", but no change of state

219 Software Erginearng | RWTH Aschen, S
==

Expressiveness

Implicit assumptions for data automata

~ Incoming stimuli are method calls and thus are processed sequentially

— No parallelism in the individual component or the transition

Programming languages such as Java allow parallelism and recursion on methods
Statecharts of the UML can not represent recursion adequately.

Class foo(x) / a=a+x; bar(@); c=a+b

inta
intb

intc recursive call

foo (int x)
bar (int y)

« To ensure : Java code is ized and
+ Assume that internally called methods (such as bar ()) are “helper methods”, which do not use or affect the
states

20 Softvars Engnoerng | RWTH Aschen S

MBSE

6. Discrete Behavior Modeling with Statecharts
6.4. States

e [

Prof. Dr. Bernhard Rumpe e for
Software Engineering

Jocste

Crate Insice

Statechart

RWTH Aachen

http://www.se-rwth.de/

SE-=-

Running Example: Function of a Crate Refilling System

Filling
« Internal states of the inserted crate forate | Crate Inside
~ NbottleCount; // current bottle count
- Ncapacity; // max. botfle count Wacwlmgfor buttontrue /
~ kg weight; 11 weight of the crate rate
/ o:crate
(+ (Statechart is refined in forthcoming slides)

« Function: Cratei
~ Load bottles into a crate Bottle b
oltlebo CrateRefilling

IB button

« Stimuli describe the external triggers that
interact with the system via input channels
~ Crates through channel i
~ Bottles through channel bo
~ Binary signal of a pushed button in channel button

Yype channel yae
name

22 Software Enginoaring | RWTH Aachen S

37

26.12.2023

States

state with state name

(

the Statechart belongs Statechart
to acrate filling system ~__—>| CrateRefillin
-

\

state invariant —
[orate weight < 17,5 kg]
entry- and exit-actions

conditions
do/ lampitrue <

> Loading Bottles

entry / [crate.bottleCount
here modelled with ——| exit /lamp:false [crate.bottleCount

Statechart is
incomplete

- States have
State invariants
~ entryfexit and do actions and conditions
~ Substates (see later)

do activity is executed “"permanently”
here: while loading bottles, activate
the control lamp

State Invariants

2 Software Engincaring | RATH Aschen

SE=. ™M

« State invariant is formulated over the attributes of the (and p
« Invariant connects the diagram state and component states

Waiting for Crate Crate Inside

[crate.bottleCount == 0]

Loading Bottles

[erate.weight < 17,5 kg]
N

/
no state invariant given state invariant using

state invariant ensuring

an attribute operability of the system

- Different states may have disjoint invariants, but is is not required in general!

2 Softvars Enginserng | RWTH Aschen S

Data States and Control States

If state invariants are not disjoint or even missing,

then state machines will be “control states”

~ for implementation, an additional attribute is needed to
distinguish them

If invariants are disjoint, this is unnecessary:
automaton states can be considered “data states”
state-defining invariants, “data” patterns

Marking the states in the automaton by stereotypes:

Usually not to be mixed in the same diagram!
Control states can be transformed into data states,
for example by introducing an attribute

This is a preparation step for code generation and can be
automated

«datastate»

Statename
«controlstate»
[invariantP] Statename

Invariant Defines the Data State

25 Software Engiearing | RWTH Aachen

SE - |™M

+ Normally invariants characterize object states:

VIP-Person

persons with rating >= 4500 can be VIP Irating >=4500]

(but do not need to be!)

« «statedefining» state invariants define state: NormalPerson

persons are in state “BadPerson” if and only if rating <O

+ «statedefining» state invariants must be disjoint.

BadPerson

«statedefining»
[rating < 0]

property
characterizes
the state

property defines
the state

26 Softvars Engnoerng | RWTH Aschen S

=

Hierarchical States

« Hierarchy for structured modelling of states

— Substates share characteristics of enclosing state
(invariants, actions, transitions)

+ Remark: UML/P offers “or-decomposition” only
“or-decomposition” = component is exactly in one
substate
“and-decomposition” would enforce a cross-product
semantics; this can be achived using several components

[crate.capacity == 20]

Crate Inside Loading Bottles

[crate.bottleCount == 0] [crat

7

ight < 17,5 kg

Filling ‘@Jﬁ
‘i

marker for completeness
of the representation of
all substates (alt: *.."

\ inner state (substate)

Semantics of Hierarchical States

21 Software Enginearng | RWTH Aschen

SE. ™M

« Explanation of semantics by mapping new concepts back on already familiar concepts:
~ E.g. states hierarchy transformed to flat states:

equivalent T

Filling ©
o) equivalent

Crate Inside /
<~

Crate Inside

[crate.bottleCount == 0]

] Loading Bottles

—
[crate.weight < 17,5 kg

&& crate.capacity == 20]

Loading Bottles
[crate.weight < 17,5 kg]

/
symbol for the equivalence but can also be expanded.
(semantic equality) of

two diagrams

hierarchy can be introduced by grouping states,

28 ‘ Softvars Engnoerng | RWTH Aschen S

=

38

26.12.2023

Initial and Final States

« Initial state: component starts in this state

« Final state: component may terminate activities/life
here (may, not must!)

both initial
marker for and final state

« Astate can be initial and final initial state marker for

final state
« Markers are not states s Waitingfor Crate ®
+ Markers in substates have a different meaning

(— next section)

20 Softrs Ergincerng | RWTH Aachen S RWTH

Summarizing Glossary for States

- State (syn. diagram state)
~ Represents a subset of the possible component states

e 1

« Initial state crate nsice
~ Marks the beginning of the lifecycle waseg for
sosms
« Final state

~ Describes the component in this state has fulfilled its duty
and is no longer needed.

« Nested state (syn. substate)
~ Is part of a hierarchically composed state

« State invariant
~ Is a condition (e.g., in OCL logic) that characterizes the states assigned to a state diagram
~ State invariants of different states may generally overlap (if not state-defining)

20 Softvars Enginserng | RWTH Aschen S
o

MBSE

6. Discrete. lBehavior Modeling with Statecharts
6.5. Transitions

a1

Crato Insice

Prof. Dr. Bernhard Rumpe g o
Software Engineering Joste

RWTH Aachen

http://www.se-rwth.de/

Transitions

+ One transition describes a portion of the component
behavior

precondition

Atransition has
~ Source state
~ Precondition
— Stimulus
= OO0 style: amethod stimulus()
- Signal style: a digital value, e.g., 3, “Theo’

© “Thing® style: a real thing, 6.. the real car postcondition > [crate.bottleCount == crate.bottleCount@pre +11
~ Action (— next section)

(action condition) -
— Postcondition -
~ Target state Loading Bottles|

« Stimulus val over a channel “c” is denoted as c:val here: a loop
~ The type of val is defined externally transition

stimulus (ie. value b [orate.bottieCount < crate.capacity]

in channel bo)
~——— bob/

action statement — > crate.add(b);

Relates previous state
(@pre) with upcoming
next state

A Softvars Engnoerng | RWTH Aschen S

Preconditions in Transitions

and (b) state invariant

Superstate
[oondition1]

*+ Readi to fireis i by (a) pre ition of the
« State invariant can be explicated:

Superstate
[eondition1]

Substate Substate
[eondition2] [eondition2]

[precondition] [precondition && condition1 && condition2]

stimulus() '\\\/ stimulus()

the state invariant of the source

state (and its super-states) may
TargetState be added o omitted TargetState

2 ‘ Software Enginearng | RWTH Aschen S RWTH

==

Superstate as a Source

starts from each substate:

SuperState ~ ©
SubStatet
SubState2

« Ifthe ition source is a the

label
=

o)

label

SubState1
SubState2

if there are identical transitions from all substates
these can be replaced by a transition from the superstate,
given the list of substates is complete (©)

+ Special cases: Substates that have initial/final markers

24 Softvars Engnoerng | RWTH Aschen S

39

26.12.2023

Types of Stimuli in Transitions

Overlapping Readiness-to-Fire

General variants of stimuli: « Stimuli types are denoted as shown:

thing is arriving over a
~ Physical thing is received ——————————> physical channel

~ Message is received (over a communication channel) method call and
message -
transmission are not
distinguished here

~ Method call is made

~ Result of a retun statement is returned

(=answer/solution of a method call) reception of a result (due

fetum(resul) . toapreviously performed
method call)

~ Exception (i.e., an error) is caught, or

catching and manipulating

" Exception(arguments)
~ Transition occurs spontaneously. el > occurred exception
. . spontaneous transition,
« If several input channels are present, the channel e.g. as local

name is added to the input stimulus continuation of an action

~ cistimulus() c3 ciperson value asimple value
5 Softvrs Eninering | RWTH Aschon S RWTH

+ shows up as non-determinism in the Statechart

Is interpreted as underspecification

~ allows developers (during design) or physical device (during operation) to choose

+ Examples
—
stimulus() D
L et
26 Sofvars Engraerng | RWTH Aschan RWTH

S

Prioritization of Transitions

Incomplete Statechart

« Overlapping can be resolved by prioritizing the transitions
« Statechart variants prioritize internal or external transitions
« UML/P allows to choose by means of stereotypes «prio:inner» and «prio:outer»

defines which transition
has higher priority

27 Software Enginearig | RW

« i.e. there is no transition ready to fire:

+ We remember the principle of ur

1: where no

« However, stereotypes can be used
~ «error

marks a special “failure” state, which is then taken as target

is given, nothing is known!

~ «exception» marks a special state in which emerging exceptions are caught

~ «completion:ignore»
~ «completion:chaos»

means stimulus will be ignored
means stimulus can be handled arbitrarily

(default, concurs with the full underspecification principle)

|ccompletion:ignore»

l«completion:chaos»

28 Softvars Engnoerng | RWTH Aschen

S

froey

Definitions (related to Transitions)

Quality of a Statechart Model

Stimulus
— Caused by other components, leads to firing a transition
~ Stimulus types: external call of functions, RPC, receiving

gt
asynchronously sent message, or timeout caie
* Transition
— From source state to target state, contains a stimulus and ©

an action as response

~ Logic constraints specify the transition more precisely « Precondition of the transition
~ Logic condition that must hold for the attribute values and

for the stimulus

Readiness to Fire

~ Transition is ready to fire if and only if the component in
the source state of the transition and stimulus are correct . Postcondition of the transition (syn. action condition)
and the precondition (of the transition) applies

~ If several transitions are ready to fire, the Statechart is
nondeterministic and chosen transition is not determined

~ Logic condition describes properties of the reaction

25 Software Enginearng | RWTH Aschen S RWTH

=N

+ Quality is defined relative to a purpose:
~ Does it fuffill it's purpose?

A) Does it model the correct behavior?

B) Details:

~ B1) s it sufficiently detailed?

— B2)Is it not overly detailed / constraining?
- B3) Complete, determined?

C) Is it presented well?

~ C1) Readable?

~ C2) Well arranged?

~ C3)e.g. does it exhibit “main flows™ well

i-Car/ (Uncieaned cChip/

Carinside

c.Ch}w

Statechart

washing]

200 Softvars Engnoerng | RWTH Aschen

e

40

—u
MBSE

6. Discrete Behavior Modeling with Statecharts

6.6. Actions

e/
Prof. Dr. Bernhard Rumpe way for
Software Engineering Joct
RWTH Aachen

http://www.se-rwth.de/

SE = |™M

26.12.2023

Action in a Transition

* Action in the Statechart

~ corresponds to output of the Mealy machine
« Effects:

~ change component states

~ Send messages / call methods / emit things

precondition

stimulus (i.e. value b
in channel bo)
~— bob/
« Action representation in two forms: .
action statement — > rate add(b);
~ Operational:
- Specific instructions e.g., in Java

" " ‘action condition,
+ Emission of message / thing over a channel i)

>
(similar to a programming statement): —
c:Message c:Person / Loading Botties
~ Descriptive: here: a loop
= Action condition = post-condition of thetransition transition

« Effect defined by math or a logic, e.g. OCL

postcondition _——— [crate.bottleCount

[crate.bottieCount < crate.capacity]

crate.bottleCount@pre +1]

Relates previous state
(@pre) with upcoming
next state

22 Softvars Enginserng | RWTH Aschen S

Actions and Activities in States

Loading Bottles tatechart

S
CrateRefil

[erate.weight < 17.5 kg]
entry- and exit-actions
(here defined -

[orate bottleCount
using conditions)

entry/
exit/ lampifalse [crate.bottleCoun

0
crate.capacity]

do / lampirue

do activity is executed "permanently”
(here: emitting "true” on the lamp port)
« entry action: executed when entering the state
~ the condition holds when entering the state (resp. after the execution of the entry action)
« exit action: when leaving
~ the condition holds when leaving the state (resp. after the execution of the exit action)
« do activity: executed permanently / regularly while in the state

« Entry and exit actions extend Statecharts to Moore machines with output related to states

23 Software Engiearing | RWTH Aachen

SE . |™M

Semantics of Entry / Exit Actions

Moore machine can be transformed into Mealy machine (a result from theory)
~ Through moving the state actions into adjacent transitions

Simple case for operational acti
— Sequential composition (with * ;")

stimulus()/ &
actionM

TargetStateB TargetStateB
entry / actionB

operationally formulated entry and exit
actions may be sequentially executed in
transitions

244 ‘ Softvars Engnoerng | RWTH Aschen S

o

Interaction of the Entry / Exit Actions in the Hierarchy: Operational

« Operational entry and exit actions are executed in the order of leaving and entering states
— exit: from inside to outside
~ entry: from outside to inside

Inner Transition

« Atransition can be specified inside a state:
~ inner transitions form an alternative representation for a
loop of this state:

SuperStateA SuperStateA
exit / actionSupA 2
SourceStateA SourceStateA
exit/ actionA ! StateA StateA
method()/
= action
= stimulus()/ method() / action
1 actionA;
stimulus()/ d short
s 2 actionSupA; ort form
————————— | 3 actionM;
SuperStateB . SuperStateB 4 actionSupB;
5 ™ R
entry / actionSupB actiond « Condition: state has no entry/exit actions, because
TargetStateB TargetStateB ~ entry or exit actions of the state are not executed on the
entry actionB 5 left side, but are executed on the right one
- alternative?
e o

41

26.12.2023

Inner Transition

* Inner transitions can be transformed to transitions of
the (only) substate, which is introduced for this
purpose:

— this ensures that entry/exit actions in inner transitions are
not executed.

StateA
entry / entryActionA
exit / exitActionA
method() / action

inner transitions are interpreted
as transitions of a substate

Stater ©
entry / entryActionA
exit / exitActionA

method() /
actior

7 Software Engincaring | RATH Aschen

SE . |™M

Do-Activity

+ Regular execution of the do-activity of a state means that
~ external time-driven mechanism triggers the contained action regularly

+ Aproposal(!) for an implementation using timer and internal transitions in software:
~ (or using a physical effect, e.g. bell ringing)

StateA
StateA =
do/ action entry / timer.set(self,delay)

exit / timer stop(self)
~— timeout() / action; ti

delay)

a do-activity is regularly executed by a timer

28 Softvars Enginserng | RWTH Aschen S

Definitions for Actions

* Action
~ Is a change of the state of a component
(and its dependent environment)
~ Often described by operational code (such as Java), or
specifying signals and a sequence of emitted things by a
logic condition
« Entry action

— Belongs to a state and is executed (or evaluated in case
of a condition) when the state is entered

« Exit action

~ Belongs to a state and is executed (or evaluated in case
of a condition) when the state is left

« Do-activity
— Is a permanently continuing activity of a state, or
~ is executed regularly (e.g., by means of a timer)

Filng

orme |

o coe msice

Watng for
Crate

Jocate

* Nondeterminism in a Statechart
~ If asituation occurs where several alternative transitions
are ready-to-fire, then behavior of the component is
underspecified
~ and also: if no explicit transition is given full
underspecification is assumed

29 Software Engiearing | RWTH Aachen

SE . ™M

P
MBSE

6. Discrete Behavior Modeling with Statecharts
6.7. Further Issues

orme |

Filing

Grate Inside

Prof. Dr. Bernhard Rumpe g for
Software Engineering roerte
RWTH Aachen

®

http://www.se-rwth.de/

Example Automata Syntax:

Model Representation by Graphics, Text and Math

« Graphical / diagrammatic: « Textual in ASCII / UTF-8: « Mathematical:
. 1|automaton Simple { 1|Tuple (S,1, 1, {2}, 6)

2| state 1 <<initial>>; 2|~ Set of states S={1,2}

b a 3| state 2 <<final>>; 3|~ Set of inputs I={a,b}
4 1-a>2 4|~ Initial state 1€8
5| 2-b>1: 5|~ Final states {23cs
sl : 6|~ Transition function §:Sx1-$

7 — with §(1,a) = 2; 6(2,b) =1

« Tabular:

target
source ™ final

initial 1 a
2

« typically restrictions apply
(context conditions)

+ more variants: XML/JSON-encoding,
Java-encoding (State Pattem), ...

251 Software Enginoaring | RWTH Aachen

Various Uses of Statecharts for Software and Systems

Statecharts can be used for different viewpoints:

N

=3

. Characterization of the possible or allowed
behaviors of a component

. Connection between state and behavior of a
component

~

o] (e —
. Representation of the life cycle of a component (e M:Sy - Sem |
. Implementation description of a method / as \

G
operation (in software only) . . Things

3. Interface description of the useful operation modi ’,"’Z:pma/”"” ‘/’; inputs/outputs

4. Abstract description of requirements on the state in the real worl
space

5. P ion of allowed sequen: of stimuli
occurrences (input signals/arriving things)

s

252 Software Enginoaring | RWTH Aachen S

42

26.12.2023

Statechart as Description of Allowed Inputs: Interface only

« Not all combinations and sequences of inputs allowed
« Example: Input RS-flip-flop circuits do not operate
well if R:1 and S:1
~ (A) describes the RS-flipflop states and behavior
~ (B) describes the “operation modes”

« Statechart (B) does not describe output (even so it
could partially)

(8) RS-flipflop usage
(interface) model

(4) R-flipflop behavior model
00/ 1

1070

10/ 1

o1/1

Summary Statecharts

* A number of variations for Statecharts allows different
areas of application:
~ Machine behavior

~ Life cycles

~ Test sequences
Much depends on the
interpretation

of a Statechart within
the system under

Statecharts are an extension of Mealy and Moore
machines

~ for practical usability

Statecharts build a powerful form to define discrete
behavior based on a discrete state space

The combination with pieces of code for actions, or
with logic conditions makes Statecharts fully
descriptive and comfortable

) development wro
00/ 0 i
s a 01/ 0 + Used in various phases of software and systems { Tl |
development: Analysis, design, implementation wit Voo
= digital input / output /
in form: SR/ Q . ions with integrate
modelling styles from hybrid automata
P Softers Engnserng | RWTH Azchen S | RWTH 25 Sotvre Engineerng | RWTH Aschen S | RWTH
e . . . Rep.
Specifying Function Behavior with Statecharts e
« Acyber-physical function
~ needs a behavior specification Energy
- ~ behavior maps input flows to output flows
Material Cybgr—
« Statecharts describe discrete behavior Z"y;f:'
MBSE ~ event-driven sequence Data_ _ __ | ®¥ AN
- finite state space
6B. Executing Statecharts ~ discrete transitions caused by external events
! i i i behavior
6B.1. Semantics Revisited induce state changes and event emission specified by
Losel « How and when to use Statecharts? Energy
Prof. Dr. Bernhard Rumpe Wit for « How to interpret a Statechart in CPS?
Gt
Software Engineering o What (o do with & Statechart? Material
RWTH Aachen at to do with a Statechart? Deta
http://www.se-rwth.de/
S RWTH 250 Sotvare Engiosarng | RWTH Aschen S RWTH
= ==

UML Interpretation of Statecharts in Software

Rep.

State of the automaton = set of states of the object

Initial state = set of object states that occur
immediately after construction (new ...)

Final state does not matter, because garbage
collection in Java “terminates” objects

Input characters = method call including arguments

Output character = result of a method execution
— Includes attribute changes, other method calls

Transition = execution of a method body

Distinction between state diagram and object state!

e Sy - Sem

interpretation of
inputs | in the software world

=)

[' P

257 Software Enginoaring | RWTH Aachen

Crw)

SysML Interpretation of Statecharts in Cyber-Physical Systems

State of the automaton =
equivalence class of states of the component

- RN %&(é: 'i"

interpretation of
inputs | in the real world

Initial state = component states that occur at start

Final state normally not applicable to physical systems

Input = incoming discrete things and signals in a
machine

e

Output = modified things as well as computed answers

Transition = operation of the CPS transforming the input
to an adequate output using and adapting internal states

Statecharts cover all domains. Even though in the
following the examples usually belong only to one
domain. > Let's keep this in mind!

250 Software Enginoaring | RWTH Aachen S

43

26.12.2023

Various Uses of Statecharts Rep.

Statecharts can be used for different viewpoints: 7

. Representation of the life cycle of a component
. Implementation description of a method /
operation (in software only)

[N

interpretation of

3. Interface description of the allowed operation inputs 1 in the real world
modi

4. Abstract description of requirements on the state o
space

5. Representation of allowed sequences of stimuli
occurrences (input signals/arriving things)

6. Characterization of the possible or allowed
behaviors of a component

7. Connection between state and behavior of a
component

Use of Statecharts for Code Generation

A Statechart can be used for code generation

* This code can be:
~ A) part of the software product
— B) part of a test driver
~ C) part of a simulation
(especially, when modelling physical things)
In a simulation, the
~ physical things are simulated through messages (data),
— physical states are simulated through data states
The principles of code generation are (almost) the
same in both cases

« Further uses for Statecharts:
~ D) generator can derive test cases (along the paths)
~ E) run-time monitoring
~ F) visualization of executions

+ These require other forms of code generators

tcari [Unckesnes |_conpi
f"(Carnsce

Statechart]

([washing

250 Sofre Engineting | RWTH Aschen S RWTH 250 Softere Engineeing | RWTH Aschen
Semantics — Revisited Transformations of Statecharts
The semantics of a Statechart is defined in several levels: « Transformations can map complex concepts to simple ones.
1. Mealy Automaton (the core): « Usage in
~ the semantics of a Mealy automaton is a relation of input and output sequences ~ semantic definition (as shown before)
~ interpretation: inputs are method calls, outputs are actions. ~ code generation
2. State invariants are added to refine the description. — optimization of (state minim
— connection between diagram and object states, allowing to cope with infinite states. ~ mapping of Statecharts to logic constraints
3. Additional concepts, such as hierarchy, entry/exit actions etc. * Transformation to code is to the definition, however, of
~ are transformed to a simpler sub-language of the Statechart language is important now:
concepts transformed: from complex concepts transformed: from complex
- — to simpler language — — to simpler language
general Statecharts " general Statecharts
concepts: math-based Aﬂcepﬁs: mapping to logic
{ nierarch hierarchy
snlry/e)}:\t simple | jsemantic mapping en\ry/siil simple
internal internal Statecharts.
transition ransition _ code
- generation
s =

Simplification of Statecharts by Transformation

concepts transformed:
from complex to
simpler language

« Collection of transformations has been presented on
the previous slides
~ Applied in an intelligent order

- —
~general Statecharts ™

concepts:

hierarchy R

entry / exit simple

internal Statecharts
transition —

+ Most of the steps can be automated (i.e. by a tool)
~ design decisions in some cases necessary or advisable
for an optimized implementation
~ decidability in logic constraints is not always given:
= check manually or use verification tool?

« Only few optimization steps are missing and thus

shown below to complete the transformations + Result of the transformation procedure: simplified

Statechart without hierarchy (flat)

2 Software Enginoaring | RWTH Aachen S
=N

P
MBSE

6B. Executing Statecharts
6B.2. Transforming Statecharts

Filing

orme |

http://www.se-rwth.de/

SE =

Gt Inside
Prof. Dr. Bernhard Rumpe g tor
Software Engineering roerte
RWTH Aachen
®

44

26.12.2023

Procedure to Simplify Statecharts: Steps 1-9: Remove Hierarchy

concepts transformed
from complex to
simpler language

These steps are already known (and here is their application order): — —
" general Statecharts

1. Eliminate do-activities concepts:
2 Transf \ transitions to real transiti hierarchy R
. Transform inner transitions to real transitions [entry/exit simple
internal Statecharts

" transition

3. Target states with substates: forward transitions to substates /

4. Source state with substates: let start from T

5. Repeat 3.-4. at all levels of hierarchy until transitions have only atomic source and target states

6. Move exit-actions of the state to the action of each outgoing transition

7. Move entry-actions to the incoming transitions analogously

8. Include state invariants of superstates explicitly in substates

9. Remove hierarchic states (only keep the atomic ones)

Procedure to Simplify Statecharts: Step 10: Refine State Invariants

Software Engincaring | RATH Aschen S RWTH

10.Refine state invariants
« Starting point: A A B # false
« Objective: obtain data states
by transferring into disjoint state invariants

* Alternatives:
~ conjugate invariants with other conditions, until disjoint

~ introduce state attribute (“status”) and use it in invariant

~ remove overlapping invariant part from a state

11 C suitable

or

26 Softvars Enginserng | RWTH Aschen S
o

Example for Step 10:

+ Can for example be used as implementation

StateA
[condA && status == STATE_A]

introduction of a
condition attribute

J

this arrow denotes the

StateB
[condB && status == STATE_B]

Procedure to simplify Statecharts: Steps 11-13: Remove State Invariants

Class "generating” aspect of Class
the
int status
final static int STATE_A=1
final static int STATE_B = 2
207 Softere Engioaring | RWTHAachen S RWTH

11.Integrate state invariants into the preconditions
~ Objective: preconditions of transitions contain all information

12.Add state invariants to action conditions
~ Objective: action conditions of transitions contain all information

SourceState
finvariants]

{precondition] [precondition && invariants]

stimulus() & stimulus()
[postcondition] [postcondition && invariantT]

TargetState
[invariantT]

13.Remove state invariants

SourceState

i

TargetState

i

258 Softvare Engnonrng | RWTH Aachen S

Procedure to simplify Statecharts: Step 14: Completion

14.Completion of the Statechart
~ depending on type: «error», «exception», «completion:ignore»
~ («completion:chaos» needs another transformation)

« Objective: expand stereotypes in Statechart

« (This expansion is optimizable when used for code generation) transition loop with negated preconditions

+ Example: < for completion (only excerpt shown)
N > [iprecon1 && ! precon2]
“°°"‘S"|§é‘éha n“°’e” method() / (empty action)
SourceStateA SourceStateA
[precon1] [precon2] [precon1] [precon2]
method() / method() / ::> method() / method() /
action? action2 actionl action2
StateB || StateB StateB || StateB

Procedure to simplify Statecharts: Step 15: Nondeterminism

15.Reduce the nondeterminism in overlapping transitions
~ introduction of a discriminator D

+ Objective: deterministic Statechart

+ There are more efficient code generation techniques: e.g., order of precondition checks

+ Example:
nondeterminism reduced by adding a discriminator condition D
in normal and negated form to a pair of overlapping conditions.
D is selectable, for example: (D == true) means left has priority

SourceState1 ‘ SourceState1 ‘

)
method() /
actiont

Bl [A&& (D]|!B)]
method() / :> method() /
action2 actiont

[B&& (ID[|1A)]

action2

20 Softvars Engnoerng | RWTH Aschen S

45

26.12.2023

Procedure to simplify Statecharts: Step 16-17: Readiness to Fire, Reachability

Code Generation

16. Eliminate transitions that are not ready to fire
~ i.e. by precondition == false

« Objective: by the many transformations so far, many transitions have been duplicated and refined with
additional conditions.
~ This may include empty fire conditions: These transitions are removable
~ ideal: test the firing conditions already during the transformation
- idability issues if first-order-logi ints are involved

concepts transformed
from complex to
simpler language

17.Eliminate unreachable states
~ by building transitive closure over enabled transitions -
general Statecharts

« These steps 16, 17 are optimizations only. concepts:

hierarchy

« Starting point:
~ simplified Statecharts:
« state invariants not yet expanded
= but states are flattened, etc.
- ie. transformations 1-17 have been applied

+ Possible variants for representation of states:

— explicit state attribute describes state
(e.g. using "int state")

— invariants of disjoint states as predicates, or

Representation for
transformation rules:

top = matching part from
the model

bottom = resulting code

$elem describes a piece
of the model to be

e X ;. i olifi entry / exit simple - : i i i
Final result: a substantially simplified flat form of Statecharts] Statecharts ftﬁﬁi“ggg iagz{z?:e';zrisg(;crlnar:‘zde\:n;rlv ?;g:;n object matched (on top) and
transition '9 & copied (to bottom)
. -
-
m Softare Enginaring | RITH Aschen S RWTH m Sofvars Engraerng | RWTH Aschan S RWTH
Ruled defined by An Example Variant 1: Disjoint Invariants for States
$SourceStateA | $SourceStateB | $SourceStateA $SourceStateB
[$invariantA] [$invariantB] [SinvariantA] [$invariantB]
[$prect] [Sprec2] [$prec3] [$prect] [$prec2] [$prec3]
Sstimulus() /, $stimulus() / Sstimulus() / Sstimulus() / $stimulus() / Sstimulus() /
Saction i $action3 $action1 Saction3

$TargetState2

$TargetState1

ﬂ

$TargetState2

STargetState1 |

$TargetState3

—

transformation rule: Result: doubl ted 1|public ... $stimulus() {
from top to bottom lets see ... what happens with this example Result: double neste: 2| if ($invarianta) (
if-then-else cascade 51 it ismeeen €
Note: a $actionl;
+ Many more stimuli are possible in the same states state invariant and 5) else if (sprec2) (
-+ Many more states preconditionsare used to | ©| Sactiont; disadvantage: code $invariantA
+ The above covers a situation with may be overlapping distinguish the transitions | 1 o esor handling is repeated in the resulting code
firing conditions sl (Iots of code)
10 } else if($invariantB) {
11 cen
12|
m o Exgnan | RWTHAschn S RWIH 2| o s | RWT4Aen S RWTH
= froey

Variant 1 + Outsourcing State Invariants into own Predicates

$SourceStateA | $SourceStateB |

Introduction of a State Attribute

$SourceStateA

$SourceStateB
[SinvariantB]

[$invariantA] [$invariantB] [SinvariantA |
[Sprect] [$prec2] [$prec3] [$prect] [$prec2] [$prec3]
Sstimulus() / Sstimulus() / Sstimulus() / $stimulus() /, Sstimulus() / Sstimulus() /
Saction1 $acti $action3 $action1 Saction3
STargetState1 S$TargetState2 RESV’; uses $Talge!Srate1J $TargetState2 $TargetState3
switcl
E 1
_ ﬂ 6 | public ... $stimulus() {
state diagram is _ _ 7| switch(Sstatus) (
1| public boolean inv§SourcestateA() { stored as 1| private int status; El case $SOURCE STATE A :
each state is mapped toa | , retuen Sinvariantd: enumeration 2| £inal static int $SOURCE_STATE A 5 e (sprech)
predicate that evaluates the| 3 |y advantage: $invariantA generated only 3 [£inal static int $SOURCE_STATE B 10 Sactionl;
state invariant 4 | public boolean inv$SourceStateB() { once. 4 [final static int $TARGET_STATE_1 11 $status = STARGET STATE 1;
5 return $invariantB; disadvantage: $invariantA can be Sl 12 } else if ($prec2) {
el complex and time-consuming when 13 $action2;
o | pubts $Sstimulus() { executed Advantage: efficient 11 | Setabus = sTanGEs s 2;
public ... $stimulus y ' 15
9 if (inv§SourceStateA()) { be“tter‘. s:mp/enstnczs attribute Drsadvamages redundant storage + 16 break;
10 remembers” current state consistency not assured, i.e. always must hold 17 case $SOURCE STATE B :
1y (status==$ SOURCE_STATE_A) implies $invariantA 18 -
19|11
15 Sotvars Engneadng | RWTH Azchen S RWTH 210 Sotvrs Engioearng | RWTH Aschen S RWTH
=N =

46

26.12.2023

Design Patterns: State Pattern (Gamma et.al., 1994)

$SourceStateA
[SinvariantA |

Using Invariants for Tests

$SourceStateB
[SinvariantB]

[$prect] [$prec2] [$prec3] [$prect] [$prec2] [$prec3]
Sstimulus() /, $stimulus() / $stimulus() / $stimulus() /, Sstimulus() | Sstimulus() /
Saction Saction2 ion3 Sactiont $action? Saction3
$
)

$SourceStateB
[$invariantB]

$SourceStateA
[$invariantA |

$TargetState 1 $TargetState2

_ﬂ

1
il 6 |public ... Sstimulus() {
- v 7| switch($status) {
1| private int status; 8 case $SOURCE STATE A : State pattern produces one individual subclass
2 | final static int $SOURCE_STATE A = 1; 5 assert $invarianta; pa P SClass StatesOfSClass
3| final static int $SOURCE_STATE B = 2; 10 /) if ($precl) { for each state. > complex structure, Sstmulus()
o | £inal static int graRGETSTATEL = 3; | |, rotiont: but also: easier to adapt by handwritten code. imulus(handle$Stimulus(SClass k)
S| 2 $status = $TARGET STATE 1;
13 } else .
o |l assert $precz; Core idea: instead of a switch, let the OO ’—'7
state invariants and some preconditions can be s $action2; dynamic lookup do the selection of the code
used as assertions for testing and simulation 16 $status = $TARGET STATE 2; efficiently ‘ ‘
purposes and withed off in final code 5) ‘ iassi) | | 1
18 break;
19|
o Sofvas Ergaerg | RATH Ascnen S RWTH m Sotvae Enginserng | RWTH Aschen S RWTH
= 2

Inheritance of Statecharts

Design Patterns: State Pattern (Gamma et.al., 1994)

$SourceStateA $SourceStateB
[SinvariantA | [SinvariantB] « Which requirements does a Statechart of the

[$prect] [$prec2] [$prec3] superclass impose for objects of the subclass? /\ A Statechart |

Sstimulus() /, Sstimulus() / $stimulus() | — different views (Harel, UML, Rumpe, ...)

Saction1 $action $action3

$TargetState1 $TargetState2 “
M « Formally:
i — subclass leads to behavior refinement is there a
| class $§Class { S class $SourceStateA { — therefore: subclass must refine the behavior specified by relation?
s = ... 15 public .. Statechért .))) i 519%_
ey e $TargetStatel $targetStatel = ... 16 handle$Stimulus($Class k) { — appropriate transformation rules ensuring this do exist refinement?|
] D] ety simvarsantar: B Statechart
it StatesClass state; 18 if (sprecl) {
"Adv:rlntagev additional 19 Sactionl'; + Pragmatic view:
lexibility. public ... $stimulus() 20 k.setState (k.$§targetStatel) ; N N -
Disadvantage: overhead { state.handle$Stimulus(this); } 21 } else ~ behavior refinement by transformation rules rather rigid
due to classes and objects: public setState(StatesOf$Class n) 22 ~ better: use of automata to test behavioral conformity
one for each state. { state=n; } 23| 1
79 Softere Engioaring | RWTHAachen S RWTH 20 Sofvars Engosrrg | RWTH Aschan S RWTH
e o

Summary Code Generation From Statecharts

« Statecharts are an extension of the Mealy machines.

Step 1: Transforming Statecharts to a simpler form
« Step 2: Mapping flat Statecharts to Code. e.g. using
the state pattern "{W"{ Regopen MBSE

7. Architectural Design
Code from Statecharts is usable in various phases of w

7.1. Architecture
software development: analysis, design,
implementation for

~ Test

- Per:ducl code Prof. Dr. Bernhard Rumpe

— Simulation Software Engineering
RWTH Aachen

http://www.se-rwth.de/

21 Software Enginearng | RWTH Aschen S RWTH

=

26.12.2023

System Architecture

System Architecture is the overall, macroscopic system
structure: collection of physical and/or computational
components together with connectors that describe their
interaction.

What is fundamental to understanding a system in its
environment

Things that people perceive as hard to change

Architectural design decisions

~ not merely models or structures

— include the decisions that lead to these structures,
and the rationale behind them

Architectural Style

2 Software Engincaring | RATH Aschen

SE. ™M

In traditional building architecture: a specific method of
construction, characterized by its notable features

An architectural style defines:

— afamily of systems in terms of a pattern of structural organization

~a y of and with ints on
how they can be combined [SG96]

Architectural styles provide design decisions and constraints
to induce desirable qualities

Through architectural styles design decision are documented
upfront and pervasive through the system

Facilitate reuse, understandability, interoperability

204 Softvars Enginserng | RWTH Aschen S

i

Architectural Styles: Pipe-and-Filter

Filters process input data and produce output data

« Pipes connect filters
~ often linear, but branching is possible

« Focus on data processing
~ (as opposed to, e.g., layers)

Afilter has several (often only one)

‘in’ streams and ‘out’ streams
— syntactic compatibility:
filters can be connected if compatible

« Heavy use in shells of Unix systems,

e.g., in the command chain:
~Is-l | grep "LOG" | sort-r

Component and Connector Pattern as a specific Architectural Style

Languages (C&C ADLs):

Component: black-box performing functions behind provided
an explicit interface interface
~ atomic components vs.
~ composed components have topologies of

subcomponents,

~ component interface: set of (possibly directed) ports

Connectors: connect components via their ports

provided interfacé

More generic patterns can be found denoted in other
architecture description languages (ADLs)

Component & Connector Architecture Description “’""""”w (””

required
interface

required interface

s Softere Engioaring | RWTHAachen RWTH 20 Sotvare Engiosarng | RWTH Aschen RWTH
SE - SE -
Other Architectural Styles Modeling Architectural Structure for CPS
* Monolithic Architectures + Modeling cyber-physical systems needs to describe the structure Energy
of relevant things including Material Cyber-
+ Layered Architectures ~ components - material - energy - data laterial phyys‘cal
- Event-driven Architectures « Functions of CPS use the data types for their channels & variables. Data_ _ __ | System (S

Publish-subscribe Architectures

Client-Server Architectures

Service-oriented Architectures

* Peer-to-Peer Architectures

* Microservice Architectures

27 Software Enginoaring | RWTH Aachen

+ Asystem is structurally decomposed in subsystems and
components.
~ structural modelling is used throughout the complete development
(design, validation & verification, deployment...)

£ ‘ Softvars Engnoerng | RWTH Aschen

48

26.12.2023

Literature Literature 2
« [Wik-SysE] https://en.wikipedia.org/wiki/Systems_engineering + EAST-AADT Language Specification: https://www.east-adl.info/Specification/V2.1.12/EAST-ADL-
+ [SeBoK] SEBoK Editorial Board. 2020. The Guide to the Systems Engineering Body of Knowledge (SEBoK), v. 2.2, R.J. Specification_V2.1.12.pdf

Cloutier (Editor in Chief). Hoboken, NJ: The Trustees of the Stevens Institute of Technology. Accessed [20.07.2020].

wansobokwil.on + [HRR12] A. Haber, J. O. Ringert, B. Rumpe. MontiArc - i ive Di and
wwiw.sebokwikl.org. - " . Cyber-Physical Systems. RWTH Aachen University, Technical Report. AIB-: 2012 03. February 2012.
ey ot G- Botz, W Feldhusen. . & Grole K-H. (2007). Engineoring Design - A Systomatic Approach London - [RRW14a] J. O. Ringert, B. Rumpe, A. Wortmann: Architecture and Behavior Modeling of Cyber-Physical

« [BS08] Boardman, J. and B. Sauser. 2008. Systems Thinking: Coping with 21st Century Problems. Systems with MontiArcAutomaton. In: Aachener Informatik-Berichte, Software Engineering, Band 20. ISBN

* [AU15] Alur, R. (2015). Principles of cyber-physical systems. 978-3-8440-3120-1. Shaker Verlag, 2014.

+ [KK98] Koller, R., & Kastrup, N. (1998). Prinzi ur i i Produkte. e ==

+ [Lee16] Lee, E. A. (2010). CPS ings - Design c , 737-742. - L o T

« [Lee08] Lee, E. A. (2008). Cyber physical systems: Design ings - 11th IEEE ium on = e e
Object/Component/Service-Oriented Real-Time Distributed Computing. ,:‘.‘;.t‘.’m‘u."‘., T S

+ [FG13] Feldhusen, J., & Grote, K.-H. (Eds.). (2013). Pahl/Beitz Konstruktionslehre. — E

+ [BDS19] Broy, M., Daembkes, - Heinrich, & Sztipanovits, J. (2019). Editorial to the theme section on model-based design of W Monti e
cyber-physical systems. Software & Systems Modeling, 18, 1575-1576. o .,4.”"'7““.,."'.2.3 s

« [BSO1] Broy, M., & Stalen, K. (2001). Specification and development of interactive systems. In Monographs in computer s .
science. New York: Springer. .

i

20 Software Engincaring | RATH Aschen S RWTH 20 Softvars Engioserg | RWTH Asshen S

System Specificati gh Fi i Repetition |

cyber-physical
« Asystem defines a cyber-physical fuqctlon . ﬂymmgny
it a physical and structure flows: input 1
~ performs data, energetic and physical transformations
- ~ and is connected to its context through its interfaces Energy
« Asystem function is described through its Material Cyber-
M BSE « input and output signature Physical
7. Architectural Design * types and forms of the Data__ __ | System e
" - . - signals / data
7.2. Function Composition Paradigm - energy flow
- material flow j flows: output
system boundary

+ The functionality is mathematically
described through the
— relation between input and output

S ‘ Softvars Engnoerng | RWTH Aschen S

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

The concept of function is our first universal specification and construction principle ‘
http://www.se-rwth.de/

RWTH
Models describing System Functions Repetition | The Underspecification Principle Repetition |
« Asystem defines a function « Deterministic and fully specified relations are
normally not achievable
« Aspects to be defined in abstract, purpose fitting - De|aysy happen Energy
models: Energy ~ Energy fluctuates Materia Cyber-
T - ion introduces lack of i i Physical
- Interface signature Material Cyber- Deta System
~ Internal structure (architecture) F;hyiwcal « Underspecification is the ability to describe the _———— ———
- Logical structure Data_ _ _ _ | System AU desired range of allowed behaviors
= Geometrical shape (instead of a single, determined behavior)
~ Behavior (over time)
() + Advantages:
~ Interactions ~ Easier to specify
~ Can be well combined with variant-building and
~ Assumptions about the context methodical refinement
|:> Abstraction with dedicated models to master complexity is the second universal principle. ‘ |:> ‘ Controlled, explicit underspecification is the third universal specification principle ‘
o e

49

26.12.2023

Signature of Input and Output of a Function

Composition

« The signature of a function describes the forms of

interactions of a system component with its Ener
environment. %
Material Cyber-

« Interactions are broken down to streams of elements, Physical

which describe the flow and can be of the kinds Data System

- data, - i

— energy or

~ material

) . . « The Interface of a Cyber-Physical System is defined

« Interactions are organized through input and output through its function signature ‘

channels.

)

The concept of stream is our fourth universal specification and construction principle ‘

208 ‘ Software Engincaring | RATH Aschen S RWTH

C ition is an act or ism to combine
simple elements to build more complicated ones

+ Examples: function composition (math), product

), software 1(CS),

« System is composed of components.

« Component is atomic or hierarchically composed of
simpler components.

+ Sub-system ~ non-atomic component

=

It helps to manage complexity.

Composition is the 5th universal construction principle.

26 ‘ Softvars Enginserng | RWTH Aschen

S o=t

Decomposition

D ition in the Devel [o]

. ition is the act of a
specification into a structure of smaller sub-
specifications

Software is decomposed according to logical
functions

Physical systems are decomposed according to
geometry

Electronics is decomposed using electric devices and
chips

* D ition and iti each
other:
— Decomposition structures the problem
~ Small sub-problems are solved into solution components
~ Composition integrates the components into a system

Interaction between the components enforces to
cope with interfaces and their structures, e.g., by
explicitly defined architectures (software) or
composition plans (physical).

27 Software Engiearing | RWTH Aachen S RWTH

m Autotit] and SEBoK

« Decomposition is paramount to manage complexity

« Software and physical systems decomposition are
relatively orthogonal and largely incompatible:
~ Logical functions vs. physical geometry

« Interfaces easily become overly complex

* Thus, decisions need to be made:
Who is the complexity and innovation driver?

« Consequence:
Development divisions are structured like their
products are decomposed.

Function
| (Component)

28 Softvars Engnoerng | RWTH Aschen

S o LRW'I'H
o Autotl and SEBOK

Decomposition introduces a Tree of Components

Decomposition supports Reuse ... when done properly

Functions

of the upper

system
(context)

Decomposition can be organized in layers, but finally
forms a tree.
This pattern can be repeatedly applied:

— The level above (A0) describes the context of the system of
interest Interface
specification
— The System of Interest (Sol) (A1) describes the system as of the system
- A1 Interface: a black box function designing the interface

= Afl-Architecture: a decomposed structure consisting of
component functions Architecture:

function

— The component functions are then described and modeled
one level below (A2) again
(using interfaces and decomposition)

Function
decomposition
(refinement)

The hierarchy of decomposition may be imbalanced:
do not use (numbered) layers on a global scale

259 Software Enginearng | RWTH Aschen S RWTH

+ Functional decomposition leads to a hierarchy
~ Atree of subcomponents, each described as function

+ Reuse of identical subcomponents enforces to
distinguish component definition and component use

« Libraries define components in an independent
reusable and adaptable form

+ Reuse is black-box: no copy-pasting of models but
referring to an existing artifact by name.

+ Reuse is based on development for abstraction and
encapsulation
- E.g., technology dependent / product specific signal
names disallow reuse

Function hierarchy

le, Independent Library

a0 Softvars Engnoerng | RWTH Aschen

50

26.12.2023

Four Dimensions in Development

Decomposition in the V-Model

« Degree of functional detail
— from abstract principle, through signal types to
differentials

« Degree of formality
~ from informal text, through models to logic formulae

« Decomposition hierarchy
— from system, through to atomic

Target: 100%: result °

« Degree of technology dependence
~ from abstract principle, through principle algorithm to HW
specific machine code

+ Main problem of process definition:
Finding the optimal path from 0 to 100% result

functional
details formality .
decomposition
. technology
starting dependence
point 0

+ V-Model suggests early decomposition in:
— Mechanics, software and hardware?

« Potential merits:
~ Company structure according to domain
~ SW-Developers are less dependent on mechanics
« own processes, own development culture, ..
~ SW-SW interfaces are bigger than SW/Mechanics interfaces
(shorter paths for discussion)

Mechanics
Electronics

Software

* Risks:
~ Not easy to optimize software/mechanics co-design
— SWi/mechanics interface to be defined early

=

Bottom part of a Systems Engineering
V-Model version

Decomposition structure should depend on innovation and complexity drivers ‘

a1 Software Engincaring | RATH Aschen

SE.. ™M

a0z ‘ Softvars Enginserng | RWTH Aschen S
i

Examples: Composed Function Architectures

D ition and Using Streams

am:E [Vegum (8) 23
in:M out: M
Sender Receiver

e Medm B

+ Function F specifying a CPS has behavior semantics
based on streams of messages/material flowing over
channels.

. ically F is a set of ical functions:
SF C LexX 1o X . X1 507X 00X ... X O

that obey timing restrictions

F:CPS

+ Decomposition of CPF into a CP Architecture is

explained by mathematical function decomposition,

Example: . 21,

~F=GOH®J

« which is equivalent to explicit use of stream channels b____
- F(ab) =c where

Jkrs: HS)=(ck) As=G(ar) A r=J(bk) /
+ Math also explains hierarchical CPF decomposition. >
+ Decomposition is compatible with underspecification S in "
and its refinement.

0 Software Erginearng | RWTH Aschen,

an Softere Engineering | RWTH Aachen S
e

Forms of Composition

Systems Engineering: From Requirements through Functions to Components

« Components are connected using typed channels
~ Component composition maps to
mathematical function composition

« General composition FBG
~ allows feedback loops between components, with a
sound mathematical foundation
~ is commutative and associative

+ Thus composition € allows to compose arbitrary
architectures of components - networks

« Special forms of composition can be derived
~ Most common: parallel c., sequential c., feedback

General composition FOG

iiM o:N

Feedback loop

parallel

(Textual) Requirements Function-Oriented System Model Domain Models

System function CAD-Model
Principle Solution
Sub function Otteton | e
Geometry T~

Sub function

Material

Sub function

Control function ‘

._® . Sub function Sub function
o

Simulation

s Software Enginearng | RWTH Aschen

SE.-. ™M

51

26.12.2023

y: Ci d Set of Uni | Construction Principles 1-5: Summary as a Concept Model
« 1: The function concept is a universal specification and construction principle realizes /
~ > Functions are a well-known mathematical construct that allow us to model system functionality precisely » described by .
~ Functions (and related math structures, such as continuous or discrete time, abstract data types) are the connection N
v " consists of
between systems thinking and mathematical foundations.
« 2: Abstraction with dedicated models to master complexity is the 2nd universal principle. ’—\
by
« 3: Controlled, explicit underspecification is the 3rd universal specification principle Elementary Composed 4)'» Architecture
— = Underspecification allows us to model absence of information or uncertainty in analysis, variability of the products, Component Component 1
degrees of freedom when izing a and also i i that occurs during system A
operation.

4: The concept of stream is our 4th universal specification and construction principle System
— - Streams allow to describe the “flow” of elements (material, data, data) through input and output interfaces over time.
Dense, even continuous, or discrete streams allow to model all forms of possible behavior of a function.

5: Composition is the 5th universal construction principle.

~ -> Composition and decomposition are essential to manage complexity. IIC « Decomposition is a main principle to master complexity.
« Streams / stream processing functions are the mathematical manifestation of CPF.

Architecture Description Languages (ADLs)

An ADL is a modeling language designed to describe
systems in their decomposed structure and behavior

Often with graphical or textual syntax

e
MBSE U

~ communicating architecture to all interested parties

7. Architectural Design — exploring alternatives

7.3. MontiArc for Function Architectures — support architecture creation, refinement, and validation
~ blueprint for further implementation

~ enable analysis and generation (mainly in software)

Sometimes |
- d pecific syntax (e.g., , avionics, ...) Q/\
efined i

~ formal (ie., well-d

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

310 Softvars Engnoerng | RWTH Aschen S
o

7 Monti

The MontiArc C&C ADL iz Afe MontiArc: Initial Example

MontiArc is an ADL The component LightCtrl

~ developed using MontiCore, LRequestProc onstatus Door
P Cmdopenciose o statuspoer ~ controls the interior light of a car

~ based on the stream approach . OrverRequestcl control
~ for modeling software and - receives the status from the light switch, onoficmd

system architectures Stawsoc the alarm system and the car's doors @—)
~ extensible with component

behavior languages d Drvermequescl ~ emits a command to tum the interior light on or off

-—41(et
[eoc [~ the light is switched depending on the doors (’rzqmred interface provided interface
AutoLockstatus rightstatus « doors are opened: the light is turned on
. . ! rl N ooor per ig
Most important MontiArc elements P centralLocking rightoC right = doors are closed: lights are turned off
~ component: unit of computation 7 backStats after a short delay
~ interface: has typed, directed ports fthe al tem is active, the interior lights blink
~ hierarchy: topology of subcomponents A stausct - [fthe alarm system Is active, the interior lights blini
=]

~ connectors: realize communication paths

an Software Enginearng | RWTH Aschen S RWTH sz Softvars Engnoerng | RWTH Aschen S

=

52

26.12.2023

MontiArc: Initial Example

{- component definition

LightCtrl

SwitchStatus

DoorStatus

connector

T
communication data type

El
K subcomponent

this is a MontiArc
model (arc for
“architecture”)

]

explicit port name

MontiArc: Components to Realize Functions

an Software Engincaring | RATH Aschen

S

The notion of component is central:
— explicit interface definition
~ encapsulates its internals: can be used as black-box

* Two variants:

Decomposed component definition
- i toan i

of
sub-components.

~ describes their communication

— does not realize behavior itself, but usually has a black-
box specification of its behavior

+ Atomic component definition
~ usually not further decomposed
~ behavior is specified / implemented directly

LightCtrl

SwitchStatus

DoorStatus

s Softvars Enginserng | RWTH Aschen

MontiArc: Ports and Connectors

« Port
~ has a direction (unidirectional)
- incoming port: receives messages
« outgoing port: emits messages
~ has a name and a type (of its messages)
- we may omit the name in the graphical
representation if the port is uniquely identifiable
by its type

« Connector
~ defines a connection between ports
- connects one input with
one or several output ports
— forwards messages

~ can only connect ports of the compatible types

incoming

outgoing

MontiArc: Data Types for Ports

LightCtrl

OnOffRequest

DoorStatus

SwitchStatus
{1 Arbiter L

[BlinkRequest

L]
AlarmStatus AlarmCheck
{1 ac

communication data type

implicit name

a1 Software Engiearing | RWTH Aachen

S

« Communication data types
~ define the structure of messages
« define the set of all possible messages
exchanged in a connection

~ E.g., modeled in a class diagram
« classes are possible communication types
« attributes define their content
= class instances represent possible messages

LightCtrl

SwitchStatus

DoorStatus

communication data type

«message»
«message»
o Temperature

| AlarmStatus | P
Off R value
Warning Date when
Critical

ste Sotvare Engiosarng | RWTH Aschen

MontiArc: Textual Syntax - Ports

MontiArc: Textual Syntax — Subcomponents and Connectors

1 | component Lightctrl {
2
3 port in SwitchStatus sws, |
4 in DoorStatus ds,
5 in AlarmStatus as, |~ Ports onoficmd
6 out OnOffCmd cmd; 7‘ nd |
; direction) type) T name
° |}
« Each port consist of
~ adirection (infout)
~ atype (defined somewhere else, e.g., in a class diagram)
~ aname (must be unique in that component)
« Ports can be referenced via their name
a Softer Enginoaring | RWTHAachen RWTH

1 | component Lightctrl {

2 port in SwitchStatus sws,
3 in DoorStatus ds,

a in AlarmStatus as,

5 out OnOFfCmd cmd;
6

7

8

9

typey name—
Arbiter arbiter; |

Alarmcheck ac;)"“"“”"P""z"‘s

1 subcomponent—) port

12| as.res > arbiter.br; |
13| as -> ac.as; connectors Aamtatus
14| arbiter.cnd -> cnd; |
15
16|}

ate Sotar Engnoosg | RWTH Aachan

53

26.12.2023

MontiArc: Component Instances Time in MontiArc

+ Acomponent instance belongs to a component type « Virtual “tick-messages” v/ describe timing progress in specification and simulation

~ each component emits a tick after consuming a tick
— synchronizes consumption on incoming ports

« Ticks are only for specifying time progress and
are not real in a system’s i

name of the
[component type

Distinguish between component types (definition) and
component instance (usage) to foster reuse

« Libraries provide sets of reusable, black-box
component types

2. time progress in the components time

1. consume a /' on each incoming port

at time 3. emit ticks on all outgoing ports
+ Component types can be instantiated multiple times t=1:
e o6 orarohios
in the same topology or across hierarchies
i
—{CLOSEDLY ..
name of the J implicit instance name: J .
f at time
component instance “or" s derived from the o -
component type "0 =2: (VLON, W) Soihsas
v Vi)
{CLOSEDN Y) DeorSiatus
a0 Softare Enginaring | RITH Aschen S RWTH a0 Softuare Engserng | RWTH Aschen S RWTH

MontiArc: Example FullAdder

Functional definition of components
is given by truth tables:
HalfAdder OR

|/ adds three one-digit binary numbers

MBSE

7. Architectural Design
7.4. Simulation with Functional Architectures

plofr|e|e
wlnlel|e|e
plolr|e|e
wlele|e|e
e le]e]e

rlole|e|n

ofrlr|o|n

Derived FullAdder behavior over sequence of inputs:

A |1 1 e o 1 _tme,
adds two one-digit binary numbers 5 le 1 1 e
Prof. Dr. Bernhard Rumpe
S = sum &g 1106 1 1 Software Engineering
€O = carry over, out s e 1 1 1 1 RWTH Aachen
CI = carry over, input c |1 1 o o 1

http://www.se-rwth.de/

a1 Software Erginearng | RWTH Aschen, S RWTH
= S

e

Definition: Simulation Simulation vs. System

A simulation is an approximate imitation of the
operation of a process or system that represents its
operation over time.

Simulation [...] of technology for performance tuning

« Simulation always has a purpose!
~ Often, computer simulation experiments are used to
analyze models (before systems are built).

« Asimulation often uses mock-up models for certain
components

« In software the difference between the system and

the simulation of the system is complicated
~ software may simulate itself.
~ amock may be the mocked component itself

+ Simulation of physical components is replacing

or optimizing, safety engineering, testing, training,
education, and video games.

them by software
tion combines some ical parts with,
some softv\mre mockups

OnDﬂReqwsl

Simulation is also used with scientific modelling of Doovasl .
natural systems or human systems to gain insight into

their functioning.

+ In a simulation setting:
~ identify the simulated elements and the
mockups that drive a simulation
— (like with normal software testing)

Simulation can be used to show the eventual real
effects of alternative conditions and courses of action.
« (all from Wikipedia)

~ partial simulations
~ environment vs. system

context needs
amockup

components under

mockup component
simulation

— Simulation is NOT the same as Visualization! inside the simulation

E Software Enginoaring | RWTH Aachen

=

Softvars Engnoerng | RWTH Aschen S

54

26.12.2023

Simulation Infrastructure For MontiArc

MontiArc Mapped to Java Simulation

In the following we exemplarily examine a possible
simulator infrastructure for MontiArc

MontiArc provides a simulation infrastructure with the
following key characteristics:

1) Simulation of the distributed system within a
single Java machine

2) Each component is realized as a Java object

3) Time may optionally be used in the simulation

4) If so, time is simulated using Tick messages

5) Simulation consists of generated code and an
runtime environment (RTE)

6) Efficiency is relevant

+ These design decisions have consequences.

+ In summary:
~ code, RTE and generators
for simulation vs. simulation differ in various ways.

s Software Engincaring | RATH Aschen

obJect/;?‘\/ y

» MontiArc language constructs map to Java: (0FEN 0N, V...)
« Component > Object [} SwitchStatu Onoficmd
« Port - Object —

+ Connection - Links (chain of links) object — link

+ Message -> Object
Tick - Special Object « Flexibility by design:
Local behavior implementation for atomic components
— Local ports, local schedulers

Buffer to store message queues
- Queue, List
« But also defaults:
~ For the buffers, ports and the scheduling
— Only atomic behavior implementations need to be added

Behavior - Method

Scheduling -> Management method in

scheduling object

a2 Softvars Enginserng | RWTH Aschen S

MontiArc Mapped to Java Simulation

Realization of Streams of Messages with Ticks: Handling Simulation Time

MontiArc “typing” maps to Java typing:

« Component type - Class
« Port type - Class
« Connection -> Association

Message type - Class
Tick - Singleton Class

Buffer to store message queues
- Queue, List class

Energy
Material Cyber-
Physical
Data System
——— ———
+ Remember:
A system defines a cyber-physical function
—it a physical and structure

performs data, energetic and physical transformations

A system function is described through its
input and output signature
signals / data, energy flow, and material flow

« Astream stores a buffer of messages 14
o «abstracts |~ CD shows
. . Ticked | classes of the
+ The tick-message simulates time progress Runtime-

Message

Environment

butferfor]

communication

Message class subsumes various types of messages

+: allows a generic implementation of message buffer between sender
- enforces marshalling of all kinds of types (e.g. int, String) and receiver
« Stream (+ implementation): the buffer >
Tick

stores the buffered elements like a Queue

. . . contains data messages:
— variant: allows to retrieve history (e.g. for testing) X 9

Ee

subclassed for C Time progress

message types (not a real
message, but also
coded as object)

Explicit encoding of the tick as object decouples
“simulated time” from simulator execution time, which

+ Scheduling > Mi"zgﬁme": method in is also called “wall-clock time” or “elapsed real time” Queue of message objects incl. tick
scheduling class « All components, ports and channels are mapped, i.e.
material transport is mapped to communication {OFFEN,ON, V...)
a2 Sotwars Engneadng | RWTH Azchen S RWTH a Sotvare Engiosarng | RWTH Aschen S RWTH
Realization of Ports Scheduling in Simulation
« Components consist of subcomponents and have in- «interface» + Simulated systems usually acts in parallel, but « Time synchronization by scheduling the tick-
and out-ports subcomponents 2 OutPort (simplified) simulation may be single threaded -> efficient and message:
. Ports f d and st : " sond controllable!
orts forward and store messages in a stream [inieracer (..) But the execution of messages needs to be scheduled « Tick's are received individually in each port
« Receiver association: realizes the connection Component ~ Scheduler decides on the order of execution
— similar to a subscriber . « However, time is processed synchronous:
N receivery1.” + Design: . The tick is given to the component exactly when:
« OutPort: accepts messages (via send-method) and comimon interface «interface» ~ Each subsystem can have its own local scheduler — Allincoming port received the tick
sends it to the receiver for comporents 3 InPort incomingStream (i.e. have completed their time slice)
i ~ Messages are stored in streams at InPorts — All messages prior to the tick are handled
« InPort: stores messages that can be retrieved fromm accept(...) - InPort receives a message and notifies its scheduler

the component (accept)

ForwardPort acts a (efficient combination)

— looks like a normal incoming port from outside but
forwards received messages to the ports of
subcomponents

- encapsulates incoming ports from contained sub-components
« looks like a normal incoming port from outside but
- forwards received messages to the encapsulated ports

£ Software Enginearng | RWTH Aschen

« Consequence: component receives one tick all ports

Scheduler synchronously (= time progress)

+ decides which messages are given to the components
+ default: first in, first out
+ but also handles time synchronization

a0 Softvars Engnoerng | RWTH Aschen S
e

55

26.12.2023

Simulating Time Progress

« Time synchronization by scheduling the tick-
message:

« Tick's are received individually in each port
(and “stored”) at first

+ Time is processed synchronous:
The tick is given to the component exactly when:

~ Allincoming port received the tick
(i.e. have completed their time slice)

~ All messages prior to the tick are handled

« Consequence: component receives and emits only
one tick synchronously (= time progress)

- - LightCtrl

(Vion, i) Switchstat
witchStatus i
OFFEN}| ON,

{ v Vi) { AlarmStatus OnOficmd_| (Lot i)
(CLOSED,N

- - DoorStatus

a1 Sofre Engineting | RWTH Aschen

SE- ™M

Simulation vs. Real World

* The real world differs from simulations
— Simulations execute models

= models are abstractions
« rely on assumptions about the real world

— The models abstract from details:
they may be too abstract
= miss relevant phenomena of the real world?
« certain technical details may be relevant

« deficiencies of the real world may be relevant

[t eSemson

+ What helps?

~ Underspecification captures not fully known real behavior,

~ Know the applicability conditions of a model
(e.g. Newton's law does not hold in outer space)

~ Add more real world phenomena to the models if needed

a2 Softare Engineering | RUWTH Aachon

S o

Time in Simulation vs. Real World

* The real world differs from simulations

+ Time in Simulation:
— The simulator can control the progress of time
— (if no real hardware is involved)

— Simulation can thus be much faster than the elapsed real
time, e.g. in climate models that is very useful.

— Simulation can also be much slower, e.g. in particle
physics or the human-brain

* Time in real world:
_ Time cannot be influenced by the system (
— “Ticks do not exist in the real world!”

Wion,

(Wi
{cLosen;

I

(oriion ¥

'}

a Softare Engineering | RWTH Aachen

Communication in Simulation vs. Real World

* The real world differs from simulations

+ In a simulation, transfer of physical gadgets and

energy is mapped to message

+ Communication in a simulation:
~ If the simulation is single threaded:
Components exchange data by copying values in RAM

— In HPC special operating system and middleware
communication exists for transport, but this has different
behavior than the targeted communication model

~ In HW/SW- the real ication system
resp. the physical item transport may be used
* Rest-bus-simulations mock parts of the real
components

Communication in real world:
~ by sending messages through a network

« Network may have deficiencies, such as
~ Varying latency; drop, repetition or altering of messages

« Explicit modelling the of the communication context
helps:

in:M

context

au Softere Engineering | RWTH Aachen

SE =

Assumptions about the Real World in a Simulation

* Asimulation is based on a model

(= abstraction of the real world)

then there are underlying assumptions
(that can be violated?).

Fail Safe

— Vibration, high/low temperature and other influences
cause devices to fail

Reliability

— Sensors may provide inaccurate or wrong values;
Actuators may fail to execute their tasks

Lack of Isolation

— External circumstances influence the system

These can be modelled explicitly, by refining the
models
— Every form of (mis-)behavior can be modelled

word

[=S ./

« Failure models,
* Stochastic models, ...
~ allow to understand the existing context,
— but also to define the systems operability context

[Medium
M T context out:M
[sender | [Receiver }
[Medum |

T context

38 Software Enginoaring | RWTH Aachen

SE . ™M

P
MBSE

7. Architectural Design
7.5. Architectures of CPS

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

56

26.12.2023

Components of a CPS

of a cyber-physi

- A is the
function
— defines the explicit interface of the function
provides the function via that interface

+ Component 1 is defined by

decomposition
each component is described by a function
~ functions are composed like in math

« Ports define the interface of a function
— explicitly typed
but energy, data, and materialized things don’t mix

«energyy N\ «energy»
ST L | cenerds

luidy A luidy

«item» PRI Cyber- «item»
Physical | ———

«data» System «datan
H e I ——

«signaly A asignal

a Software Engincaring | RATH Aschen

SE = |™M

Example: Car Interior Light

CD4Phys

+ Switch car light on / off enum» enumy
~ based on switch, door, and alarm status «signal «energy» AlarmStatus i
Light Voltage
* Input: cd intensity | | V value off On
Discrete data arrive at discrete times Warning off
~ Continuous flow of energy Critical
CarlnteriorLight

SwitchStatus

Voltage

DoorStatus Lightctr

AlarmStatus

Voltage

s Softvars Enginserng | RWTH Aschen S

i

Example: Storage of Screws

Input:
Screws arrive as discrete items
— Store releases arrived material based on identifier

Internal state:

the received items are stored in dedicated racks, which is

modeled by a
- Map<integer, Screw> s initialized with &

= The map looks like software data, but models a real

storage with physical screws

« Output:

— And as specification the processing of screws given as
SpesML spec for messages arriving at the two channels

9| post:

11| -

1| spec storage
2| port in Screw din;
3 int id;

1

id;
port out Screw dout

6| Map<iInteger, screw> s

incoming scre

12| incoming id

Mapl[];

din

s.get (screw.id)==screw &&
dout=epsilon

s.containsKey (id)

Modelling System and System Context

* MontiArc can be used to model the context of a

system
context is also modelled by a set of components

~ but the intention is not to realize them, but to use them for
specification, testing and simulation

+ Example of context:
The internet (communication medium) in a protocol:
~ goal: transmit messages
system to develop: Sender and Receiver
context: Medium, is defined to explicitly specify
assumptions about the medium

+ In general: the smarter a system is, the more
assumptions about its context need to be modelled.
~ e.g. autonomous cars, connected airplanes, ...

{ Medium

13| pre:
14| post: s==s@pre.remove (id) &&
15 dout==s@pre.get (id) context
9 Softere Engioaring | RWTHAachen S RWTH a0 Sotuare Engioeerng | RWTH Aschen S RWTH
Humans as System Context Logical and Technical Architecture e.g. in the Internet of Things
logical architecture
« Example: Elevator System (ECS) light1 at1 Internet of Things describes the network of physical FireExtinguisher
Human Elavator Elavator objects that are embedded with sensors, software,
Smoke

defined by

- Elevator (mainly the physical gadget)

=« ElevatorControlSystem (the software part)
= HumanUser (part of the context)

interfaces are defined by a MontiArc model

« Untrained HumanUser behaves arbitrarily

demonic human behavior

-> a specification of pilot behavior finally is
“i " via trainings, guideli and

handbooks.

light2
Userg 7<% Control

System
btn1_ | ECS
w ——0
bin2

« Signature of the ECS:

~ E.g. pushing buttons repeatedly, not entering elevator, ..

« - ECS must be robust against demonic context i.e.

« In an airplane, the pilot behavior can be constrained

— btn1, btn2: buttons to request the elevator for a floor
light1, light2: indicators where the elevator will go to

— at1, at2: signals that elevator has arrive
open, close actuators for the door

e Software Enginearng | RWTH Aschen

SE_ ™M

=N

and other technologies for the purpose of connecting

and exchanging data. Detector

Logical architecture:

Sprinkler
Fire
Detector
Sprinkler

components are logical computation units,
independent of their later physical devices
(threads / processes / processors / computers / clouds)

- are of the actual
form (network, encoding, security,

a2 Softvars Engnoerng | RWTH Aschen

S s

26.12.2023

Logical and Technical Architecture in the Internet of Things - 2

Logical and Technical Architecture

MontiThing

Technical architecture

~ components are physical devices, CPUs, FireExtinguisher

— connectors are actual communication channels (Ethernet,
Can-Bus, encoding, ...)

Smoke
Detector

+ Mapping between logical and technical architecture A
~ various criteria .

» Temperature,
~ redundancy, robustness, load balance, security, ...

Sensor

{] Sprinkler
Fire
Detector

{1 Sprinkler

« Virtualization leads to two ial)

;mapping

technical architecture

P o Fire
Smoke L Temperature, Detector
Detector Sensor

v
Sprinkler

L. JIE

®-0

ua ‘ Software Engincaring | RATH Aschen

SE . |™H

« Logical architecture:
~ components are logical computation units,
independent of their later physical devices
(threads / processes / processors / computers / clouds)
of the actual I

- are
form (network, encoding, ...)

« Technical architecture
~ components are physical devices, CPUs, ...
~ connectors are actual communication channels (Ethemet,
Can-Bus, encoding,

+ Mapping between logical and technical architecture
~ various criteria ...
~ redundancy, robustness, load balance, security, ...

+ When virtualization is used: mappings
~ (a) from logic to virtual architecture plus mapping
~ (b) from virtual to physical architecture plus mapping

logical
architecture

physical
architecture

au Softvars Enginserng | RWTH Aschen

Mapping Architectures into the Real World: Language & OS Barriers

Summary Architectural Modelling

The MontiArc language has two generators:
« MontiArc generates code to simulate distributed systems
« The MontiThings generator regards its components as software
~ maps models to code for execution on distributed systems
— ports at system boundary act as connection to other systems, sensors, actuators

External connectors

MontiThings communicates

may use different

via ports with external
system components

FireExtinguisher

Smoke

P
approaches

external | Sensor
connector Boolean

(On/of

Detector

Temperature

Sprinkler

Sensor

~LSiren

System boundary

s ‘ Software Engiearing | RWTH Aachen

SE. |™M

MontiArc is a good example for
modelling distributed systems

~ components as units of computation
— interfaces of typed, directed ports
~ hierarchical decomposition

~ recursion loops

~ unidirectional connectors

~ explicit timing

Underlying semantics:
Focus: stream processing

MontiArc also provides a simulation
— flexible scheduling

~ extension with handwritten code
— explicit simulation of time

DoorStatus

AlamnStatus

a6 Softvars Engnoerng | RWTH Aschen

S

e
MBSE

7. Architectural Design
7.6. Architecture and their Connection to other Models

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

Physical Components as Class and as Function

« A component realizes a function.
~ when modelling behavior, we attach functions to
components

+ We can use CDs to model the possible structure of
CPF - stereotype «component»
~ Afunction decomposition must be compatible to a
component decomposition to such a CD
— Function composition connects instances
~ Functions include behavior (input and output), which is
not defined in class diagrams

— Class diagrams allow to model
« a) several possible structures (here e.g. 2..4 blades)
« b) possibly structural changes at runtime,
(although functions have (mainly) a static structure)

— Component-CD s also called “Meta-CD" and e.g. used in
development tools

Component-CD |

a8 Softvars Engnoerng | RWTH Aschen

58

26.12.2023

Bill of Material: BOM in Production

1 Propeller 2.4

Axle connectsTo Blade

« In manufacturing and production:
Abill of material defines the product structure
— alist of the raw materials, sub-assemblies, parts,
and the quantities of each needed to manufacture an end product.

+ BOM is technically a subset of a class diagram
~ attributes describing properties and quantities madeOf
~ heavy use of composition

- (modelled by i
~ (but no associations)

CFP Architectures in Maintenance, Construction, etc.

« CPF Architecture

~ for design
~ as built
— for maintenance

: engineering architecture,
: manufacturing architecture,
: service architecture.

« ... for a concrete product is more detailed and thus

better suited to reveal failures, optimizations and other relevant

aspects.

~ E.g. circuit diagrams for maintenance,
exploded views,

+ Variants of BOM (as defined by tools): plumbing in buildings,
~ for design : engineering BOM, etc.
~ as ordered : sales BOM, _ o
_ as built : manufacturing BOM, e o s e o e) + These are typically static diagrams of
— for maintenance : service BOM. oo —— I — i components and connections
« Varying in detail, and whether they describe product structure or |z wres smisede mion ERC
2 ¢ = e st ot Y — |
the raw materials to be transformed into the product. ENI LT b e E
o Sofre Engineting | RWTH Aschen S RWTH a0 Sotvae Enginserng | RWTH Aschen S RWTH
Literature Function-based Universal Specification and Construction Principles
* https:/jen.wikipedia. X 1. The function paradigm is the foundation
- hitps://en.wikipedia.org/wikilList_of_software_architecture_styles_and_patterns. ~ Clear boundaries, clear input/ouput signatures «energy» A (| «energy»
= [MT00] Medvidovic, N. and Taylor, R.N.. A Classification and Comparison Framework for Software Architecture Description Languages. 2. Controlled, explicit underspecification «fluid» Y «fluid»
IEEE Transactions on Software Engineering, vol. 26, no. 1, pages 70-93. 2000. - i iabili i i
i gineering, v pag abstraction, variabilty, ability to describe the desired o .t Cyber- o
+ [MLM+13] Malavolta, 1., Lago, P., Muccini, H., Pelliccione, P., & Tang, A. What industry needs from architectural languages: A survey. range of allowed behaviors — 2l Physical —_—
IEEE Transactions on Software Engineering, 39(6), 869-891 2012. [HRR12]A. Haber, J. O. Ringert, B. Rumpe. Montirc - Architectural «datan i System «data»
Modeling of Interactive Distributed and Cyber-Physical Systems. RWTH Aachen University, Technical Report, AIB-2012-03. February 2012. 3. The concept of stream ——t o
~ as mathematically precise, time dependent model of «signaly ANy «signal»
+ [RRW14a]J. O. Ringert, B. Rumpe, A. Wortmann: Architecture and Behavior Modeling of Cyber-Physical Systems with MontiArcAutomaton. In: inputioutput behavior —

Aachener Informatik-Berichte, Software Engineering, Band 20. ISBN 978-3-8440-3120-1. Shaker Verlag, 2014.

[KRW20] 0. Kautz, B. Rumpe, A. Wortmann: Automated semantics-preserving parallel decomposition of finite component and connector
architectures (Automated Software Engineering, Vol. 27, Apr. 2020)

[Rin14]J. O. Ringert: In: Aachener Informatik-Berichte, Software Engineering, Band 19. ISBN 978-3-8440-3120-1. Shaker Verlag, 2014.
. Shaker Verlag, Sept. 2016.

Band 24. ISBN 978-3-8440-4

iik-Berichte, Software

[Hab16] A. Haber: In: Aachener Infc

4. Composition / decomposition into hierarchies of
function nets

5. Static dimensioning of parameterized functions
~ E.g. through simulations and optimization strategies

6. Adequate modelling techniques center around the
function paradigm, e.g. SysML

as1 Sotwars Engneadng | RWTH Azchen RWTH w2 Sotvare Engiosarng | RWTH Aschen RWTH
SE- SE-.
OCL - Introductory Example
« Consider this class
Passenger
String name
e e
boolean needsAssistance

MBSE « Now apply the following constraints:

8. Specifying Constraints and Invariants with the OCL context Class inv: . =

8.1. Introduction to the Object Constraint Language fnvaran! ~ passengers are at least one year old ocL

context Method
pre: Precondition
Prof. Dr. Bernhard Rumpe post: Postcondition - older than 90 will ically receive
— SO support

Software Engineering

RWTH Aachen

http://www.se-rwth.de/

RWTH a5t Solvars Engnaerg | RWTH Aachan RWTH
SE-- SE .

59

OCL - Introductory Example

26.12.2023

* Consider this class

> Passenger
contextis/ | Sting name
int age
theclass | | boolean needsAssistance
« Now apply the following constraints: \
passengers are at least one year old context Passenger inv:
age >= 1

~_____ invariant for the
attributes of the objects
— passengers older than 90 will automatically receive
support context Passenger inv:
age >= 90 implies needsAssistance == true
7
operators from propositional logic _/
allows to combine expressions

Software Engincaring | RATH Aschen

S RWTH

OCL - Example 2 (#Landings)

origin departures.
Airport "

T - Flight
String name

[Ainine]

Time departure
arrivals| Time arrival
1 ~ Time duration

dest

- String name
String nation

« Less than 300 arrivals at any airport:

=)
ocL

Softvars Enginserng | RWTH Aschen

OCL - Example 2 (#Landings)

origin departures.

Airport """ | - Flight [Airline
String name Time departure String name
dest arrivals | Time arrival String nation

1 ~| Time duration

AN

“~__ multiplicity 0.299 was an easy
alternative in this case

« Less than 300 arrivals at any airport:

(~explicit definition of object ap as context:
invariant applies for all objects of type Airport:
context Airport ap inv:
ap.arrivals.size < 300

navigation along an association: 2
returns set of objects (type: Set<Flight>)

Software Engiearing | RWTH Aachen

OCL - Example 3 (Schiphol)

origin departures

Airport "
String name

Flight

\ Airline \

Time departure

dest arrivals| Time arrival
1 | Time duration

« All KLM flights start in Amsterdam (Schiphol):

' String name
String nation

=
ocL

S RWTH a0 Sotuare Engioeerng | RWTH Aschen S RWTH
=N o
OCL - Example 3 (Schiphol) OCL - Example 4 (Start + Landing)
origin departures. origin departur
Airport """ | - Flight [Airline Airport " Flight [Airine]
String name Time departure String name Time departure String name
dest arrivals | Time arrival String nation dest arrivals| Time arrival String nation
1 +| Time duration 1 | Time duration
« All KLM flights start in Amsterdam (Schiphol): « All KLM flights start or land in Amsterdam (airport is called "Schiphol"):
context Airline al inv: &
al.name == "KLM" implies ocL
al.flight.origin.name == { "Schiphol" }
< i =~ A
navigation along sequence of associations: __J* "~ set with only a single item
returns set of names (type: Set<String>) ~
259 Sotvars Engneadng | RWTH Azchen S RWTH 0 Sotvrs Engioearng | RWTH Aschen S RWTH
= ooty

60

26.12.2023

OCL - Example 4 (Start + Landing)

origin departures

Airport """ 1 N Flight Airline
String name Time departure String name
dest arrivals| Time arrival String nation
1 < Time duration

« All KLM flights start or land in Amsterdam (airport is called "Schiphol"):

context Airline al inv:

Object Constraint Language (OCL)

+ OCL is a textual specification language
~ for properties that UML-diagrams do not cover
~ invariants, pre-/postconditions, guards, derived attributes

+ OCL is similar to a First-Order Logic, but executable.
~ Boolean operators, quantifiers

« Basic data types
~ Boolean, Integer, Real, Char
~ sets and lists

context Airport ap inv:
ap.arrivals.size < 300

context Airline al inv:
al.name == "KLM" implies
al.flight.origin.name == { "Schiphol" }

context Airline al inv:

al.name

"KLM" implies

forall f1 in al.flight:

WKIM" impli + OCL is used in the context of UML diagrams £1.origin.name == "Schiphol" ||
al.name KLM" implies ~ types and functions for OCL expressions are defined £1.dest.name "Schiphol"
S forall f1 in al.flight: there
f£l.origin.name == "Schiphol" ||
quantifier over a set of flights fl.dest.name == "Schiphol" * Inthis lecture: o
~ special version of the OCL that is aligned with Java
381 Sofre Engineting | RWTH Aschen S RWTH a6z Sotvre Engineerng | RWTH Aschen S RWTH
e it
Modeling of Energy Efficient Buildings Sesar - Air Traffic Management (EU)
Lo

+ Model-based specification, analysis & energy optimization

* Methodology:
— model + rule-based specification of technical facilities
~ automated data collection and -processing

« Example:
+ Checking adaptive heating circuits

Task: “Model patterns of ‘interesting’ events”
-~ Safety Pattern Language, Airspace Configuration Language
~ Constraint language on flight conditions
(flight plans, weather, pilot health, device conditions,
+

DSLs based on OCL + pattern i
+ systematic injection of under-specification

]

. Automated check of consumption data Sty Pt Lngug Fight i Pt Edtor Wincon »
+ Optimizing operations and correfation analysis [N NN e KT Bttt | e renisof confictanaiss
or double Outside temp. © U < "
tate space g e ¢
L ke B I Rvorn e e il Si=tz spoce X 2 var conflicts = CompositeConflict.all:
OT < 6 implies RT >13.0 and 3 var -
OT > 22 implies RT = 0.8 * OT 4
Languages: e
Facility modeling based on hierarchical function nets, S " et atespace.cucicviveriichesas.poricion:cimeoves) (
OCL variant, Statecharts for condition monitoring 0
1 match : (ac.flight.callSign <> f.callSign) and f.callSign.isVerySimilacTol with A. Horst
363 Software Engineering | RWTH Aachen S RWTH 364 Software Engineering | RWTH Aachen S RWTH
Example: MontiGem Code Generator using OCL Rep. DSLs in MontiGem — MaCoCo

« Multi-user web-application for data management

« Developed using MBSE and lots of code generation
~ Generate full application stack

« Starting point:
~ Class diagram modelling the application data

~ (+ some GUI models)
~ + Application functions

= 2
Frontend Backend Database Screenshot of MaCoCo (Management Cockpit for Controlling).
developed by AGe, PH, JM, LN, SVa, GV, and others

ass Software Enginearng | RWTH Aschen, S
e

PROFIL Gow g | [[ciass vser (
e o I i soznane:
o - s) | 3
5| Optionaicstring> initials:
e §| string omail;
7| boolean authenticated:
i o Lo 8| Optional<String> timID;
= . sl

datatable ‘meinBenutzerinfoTabelle
columns < it (
Benutzername”
fow "TIN-Kennung"
fow "E-Mail Adresse’
zow "Kirzel”

. <username (editable)
. <tin (editable)

. <nitials

«

passwort.length() + " Zeichen.':

SJulel}SUOD 9dBMBJUI JBS() BINJONJIS Bleq

366 Softvars Engnoerng | RWTH Aschen

S

o

61

Generator — OCL

Example model
ocL [“Domain.oc!
« logic constraints + also error messages L [context User inv ispasswordvalid:
2| password.length() >= 5;
3| shortError: "Min. 5 zeichen”;
. Generation 4| error: "pwd zu kurz: ' + password.length();
— A) for the GUI: Validator methods, used in forms to
immediately check input & give feedback, in JavaScript
— B) for application server (backend): Validator methods,
used to prevent erroneous inputs, in Java
Application server: GUI frontend: [uservaidators)
11 | public Result israsswordvalid(String password) (21] public static isPasswordValid(password : string | null): void {
12 | if (' (password.length() >= 5) 22 false;
13 return Re: rror 23 null) || password.length >= 5)))

wd zu kurz

“ 4 password.length()
I

7
16 | return Result.ok();
s |y

constraintFailed = true;

)
if (constraintFailed) {
throw new ValidationError("Min. 5 Zeichen”);

87 Software Engincaring | RATH Aschen

SE = |™M

MBSE

8.2. Overview

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

8. Specifying Constraints and Invariants with the OCL

26.12.2023

context Class inv:
invariant

context Method
pre: Precondition
post: Postcondition

Concepts of OCL -1

« Condition:
~ acondition is a logic formula about a system.
It describes a property that a system or a result should

have.
— its results in a Boolean value, i.e. true or false.

« Consequences for their use in code and simulations:

— acondition evaluation does not crash
« Example: 1/0 ==7 has the Boolean value “false”.

— acondition is side-effect free
=« only result is the calculated value

~ invariants are only partially computable (details later)

* Invariant:

~ describes a property, that holds at each (observed) point
of time.

~ observation points of time can be restricted.

~ temporary violations are permitted, e.g., while executing a
method.
« Example: invariant a==2*b is violated within method

bodies like { a++; b=b+2 }

* Result:
~ invariants apply especially when the objects are “idle” and
no methods operate on the objects.

Concepts of OCL -2

« Context of a condition:
~ acondition is embedded in a context, that it constrains

~ context is defined by
= one or several variable names and their
« signatures, that can be used in the condition.

~ Context typically denotes
= objects of given classes (like ap), which then allows
access to their methods and attributes, or

= methods of classes:
describing the behavior of a method

« Conditions are usually meant to constrain this
i.e. the underlying data structures (classes)
or method behaviors

context Airport ap inv:
ap.arrivals.size < 300

« Evaluation of a condition is always based on a
concrete object structure.
— Evaluator assigns values / objects to the variables that
are introduced in the context.

209 Sotwars Engneadng | RWTH Azchen S RWTH a0 Sotvare Engiosarng | RWTH Aschen S RWTH
= ==
Context Context without Explicit Names
« Context defines variables a,b: « Context defines implicit new variable this:
context Auction a,b inv: Auction ion inv: Auction
a.startTime < b.startTime implies v auctions __ bidder Person °°";f"t Auction e sThan (this.closingTi + auctions __bidder Person
a.closingTime < b.closingTime #String < o o]+ this.startTime.lessThan (this.closingTime) | yqiing < el
-Money bestBid #String name -Money bestBid #Sting name
Ant numberOfBids -boolean isActive + equivalent to: dnt numberOfBids -boolean isActive

* Name for a condition:

context Auction a inv Biddersl:
a.activeParticipants <= a.bidder.size

“Time ~ startTime
-Time ~ closingTime
~Time finishTime
-int__activeParticipants

an Software Enginoaring | RWTH Aachen

context Auction a inv:
a.startTime.lessThan (a.closingTime)

« shortened form omitting “this” (like in Java):

context Auction inv:
startTime.lessThan (closingTime)

Time ~ startTime
“Time ~ closingTime
“Time finishTime
-int__activeParticipants

2 Softvars Engnoerng | RWTH Aschen

SE

62

26.12.2023

Primitive Data Types and Collections

Set Comprehension

* As known from Java

* Sets are similar to those in mathematics

boolean, char, int, long, float, byte, (like in Haskell)
short, double Auction - Auction oo
— Corresponding operations are available (+.-, *..) st puctions __ bidder|— st guctions __bidder
- forbidden are --, ++ etc. because of side effects ring . R ring . * s
-Money bestBid #String name -Money bestBid #String name
Aint numberOfBids -boolean isActive -t numberOfBids ~boolean isActive
+ String is not a primitive data type, but a normal -Time ~ startTime Time startTime
class -Time ~ closingTime . - . “Time ~ closingTime
Time finishTime « E.g.: the number of active participants is correct: Time finishTime
.) -int activeParticipants -int activeParticipants
« Collection structures for sets, lists,
- Set<int>, List<String>, Optional<.>, context Auction a inv:
With special syntax assistance R . a.activeParticipants == { p in a.bidder | p.isActive }.size
context Auction a inv: P
. * i - Tr—
+ Systems Engineering also uses 2 + 3,5 * a.numberOfBids > 1 - foo ("text") /J
— physical types, such as mol/m*2 and p is in the set of bidders characteristic of p:
physical expressions 3,3 km/h * 2,7 sek p introduced with the scope selects a subset
of the sets comprehension
a Sofre Engineting | RWTH Aschen S RWTH ars Sotvre Engineerng | RWTH Aschen S | RWTH
Local Variables in OCL: let-Construct Local Operations in OCL: let-Construct
Auction Auction
+ auctions__bidder Person - auctions __bidder Person
#String Y ricipants +|* #String Y T+
-Money bestBid #String name -Money bestBid #String name
-int numberOfBids -boolean isActive -int numberOfBids -boolean isActive
“Time startTime “Time ~ startTime
. . “Time ~ closingTime . “Time ~ closingTime
« Local variables for convenience: -Time finishTime « Local operation: Time finishTime
-int__activeParticipants -int__activeParticipants
context Auction a inv: context Auction a inv:
let min = startTime.lessThan(closingTime) ? startTime : closingTime let min(Time x, Time y) = x.lessThan(y) ? x : y
2 N
"~ min is introduced (N nin is defined as operation with arguments here
as variable here ™~ A?B:C =If AThenBElse C in
startTime min(a.startTime, min(a.closingTime,a.finishTime)) == a.startTime
AN
and can be used in the body
ars Sotwrs Engnating | RW S RWTH Sotuare Engioeerng | RWTH Aschen S RWTH
=N o

Case Distinctions

Appendix: List of OCL-Operations, Part 1

« Case distinctions always evaluate to values
(OCL has no statements)

* Variants:
~ if condition then expressionl else expression2
— condition ? expressionl : expression2

~ typeif variable instanceof type then expressionl else expression2

« typeif is atype-safe version of the typecast for variables

context Supertype m inv:
typeif m instanceof Subtype then (m known here as Subtype)
else (m here as only Supertype)

Priority Operator Associativity Operands, Semantics

ar Software Enginearng | RWTH Aschen S RWTH

14 .@pre left value of the expression in precondition
B left transitive closure of an association
13 right numbers
right Boolean: negation
right type conversion (cast)
12 left numbers
1" e left numbers, string (+)
10 << >3 > left shifts
9 <., . left comparisons
.instanceof. left type comparison
.in. left element of
are Sotvars Engrnrng | RWTH Azchan
S o i

63

Appendix: List of OCL-Operations, Part 2

Priority Operator Associativity Operands, Semantics

26.12.2023

8 left comparisons
7 left numbers, Boolean: strict and
6 A left numbers, Boolean: xor
5 - left numbers, Boolean: strict or MBSE
2 88, oft Boolean logic: and 8. Specifying Constraints and Invariants with the OCL context C‘assiri‘r“l‘;’riam
3 Al left Boolean logic : or 8.3. Logic of the OCL
27 .implies. left Boolean logic : implicit Co";f: ’\g?;xd\ﬁon
23 <=>. left Boolean logic : equivalent Prof. Dr. Bernhard Rumbe post: Postcondition
2 2. right expression of choice (if-then-else) Soft\./var-e Engineering P
RWTH Aachen
http://www.se-rwth.de/
an Sofre Engineting | RWTH Aschen S | RWTH S | RWTH
Logic in OCL Binary vs. Thr lued Logic: Ci
« Boolean expressions about attributes and associations are combined with « Binary logic uses true and false only: « Truth-table for a three-valued conjunction:
~ logical operators: and, or, equivalence, « E.g. the truth-table for the and-operator:
) &&, 18 <=>, implies, not Ag&B . fal A8&&B ‘ true false undef
- quantifiers: exists, forall rue alse true true f 2
~ comparison: == false § § -
+ Boolean constraints are binary, either true or false undef ? ? ?
* Inan |mp|emenhlat|on undefined values can ocour + There are a number of laws « undef is a mathematical “pseudo value”
- gg’lg;fr:"i‘:afi':: e.g. infite loop — doesn't exist in the OCL language itself
~ invalid value (reference does not exist, enumeration out-of-range) - associativity (2 &&b)&&c <=> a&&(b8&c) - Is used to describe semantics
« Introduction of a pseudo value “undef” that is used only to explain the semantics - commutativity a&&b<=>b&&a Q Which ! il hold?
mouon aska<sa Q: Which laws can sill ol
381 Softere Engioaring | RWTHAachen S RWTH a5z Sotvare Engiosarng | RWTH Aschen S RWTH
Variants of Three-valued Logic: Binary Semantics and Lifting
« (1) Strict Evaluation (Pascal, strict “&” in Java) A&LB | true false undef « Distinction of terms with Boolean values with three « Challenge: A undef == false cannot be implemented
+ evaluation order doesn't matter because laws hold true true f undef results and logic expressions with two only values
- always both arguments to evaluate (1) undef « Practice in Java shows “undef’ mostly occurs by
- inconvenient for a Ioglc_, becfmse" f:f three cases false f f (2),3) false « Developers write ordinary terms, like “b==1/0" 1. abnormal error (exception)
* (2) Sequential Execution (“&&” in C, C++, Java, ...) i 2. infinite recursion
+ easy to implement (1),(2) undef . PRI “ " a » 3. infinite loops occurs rather rarely
+efficient: if left is fase, right will not be evaluated undef | undef | 3" (oo undef ::':;I'g;rf)t\"ﬁg the “undef” value to “false” by an

- not commutative (and thus not optimizable)

(3) Kleene Logic (unusual in programming)
+Boolean laws apply: associative, commutative, ...
- both arguments need to be evaluated in parallel A&&B | true

true true
(4) Lifting of Undef (verification tool Isabelle) ;
+ simple laws and proofs
+ easy to formulate properties
- not fully evaluatable

Variant (4): undef and false in the lifted logic
are treated as identical: so just binary logic!

E Software Enginoaring | RWTH Aachen

SE . ™M

+ Case 18&2 result in exceptions (e.g., stack overflow).
So lifting of an expression $x is partially
implementable:

boolean res;
try {

res = $x; Il evaluate expression $x
} catch(Exception e){

res = false;

Lifter A can be implicitly added in the OCL

}

a4 Softvars Engnoerng | RWTH Aschen S
=

64

26.12.2023

Special Operator “defined”:

Comparisons using ==

« Inrare cases it is helpful to talk about the T context Auction a inv:
definedness of a value resp. an expression. 2 °
Special ! 2 let Message mess = a.message[0]
« Special operator in
~ defined(...) ‘Z defined (mess.foo()) implies ...
« allows to clarify the definedness of a value
« For example, it holds:
~dnv: 1| inv:
tdefined(1/0) 2| 1let int a = 3,
3 s
int b =0
+ Operator defined is not fully computable, but with 4 in
tricks similar to the lifter A it can be used e.g. in tests Z defined(a/b) ? a/b : a+b

and simulations

s Software Engincaring | RATH Aschen

SE- ™M

+ Operators that may return defined values for undefined arguments can be called “non-strict”

+ Boolean operators, case distinction, and the let-construct are not strict:

if true then a else undef equiv. a
~ leta=1/0in 3+7 equiv.: 3+7

« The comparative operator == (as well as != and equals()) are strict according to convention:
f) def

~ (undef == undef) equiv.: un

* Please note that
un

~ undef def equiv.. A(undef
- Aundef)
~ undef <=> undef equiv.. A(undef)

~ i.e. <=> uses lifting inside arguments, while

uses lifting outside

false
true
equiv.: true

aas Softvars Enginserng | RWTH Aschen

RWTH

S o

e
MBSE

8. Specifying Constraints and Invariants with the OCL
8.4. Collections in the OCL

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

Collections in OCL

context Class inv:
invariant

context Method
pre: Precondition
post: Postcondition

Particularly important for navigation along
associations
« The OCL uses generic types, like Java

Set<X> represents sets of type X
List<X> represents lists:

~ elements of index 0..(length-1) accessible
— multiple occurrences possible

Collection<X> is super type of Set<X> and List<X>
— common interface of the two collections

Optional<X> describes possible absence of an
element

Nesting is possible, e.g. Set<List<X>>

« Example expressions
- Set{}, Set{ 2,3,5 }, Set{ "text", "part" }
=14}, {2,3,51}, (2}, {{2}}
- 12,3,3], List{2,3,3)
~ Person //inOCLa class name represents its extension;
// ie., the set of all currently existing objects

« All datatypes have operators, such as: add, first, last,
... similar to the Set, List, Optional types from Java

« additional forms of expressions, such as
~ Set comprehension .
— Elvis operators for optionals .7 .
~ Quantifiers forall, exists

a8 Softvars Engnoerng | RWTH Aschen

SE .

Collections: Nesting, Subtype Hierarchy

« Collection types can be nested:

1| inv:

2| let set<int> si ={1,3,5]});

3 Set<Set<int>> ssi = { {}, {1}, {1, 2}, si };
4 List<Set<int>> lsi = List{ {1}, si, {}, si }
5| in ...

« Subtype hierarchy applies for collection and element types (as opposed to Java):

T{ coles |

/\

induces

[ouest

Comparison for Collections

a0 ‘ Software Enginoaring | RWTH Aachen

is used for primitive data types (int, km/h, ...)
~ equals() for object types (Person, String, ...)

Collections themselves do not have an “object
identity” in OCL

for collections requires comparison of « If X is a primitive data type or a collection, we have

for Set<X>:

1| context Set<X> sa, Set<X> sb inv:

2| sa==sb <=>

3 (forall a in sa: exists b in sb:
4

5

&
(forall b in sb: exists a in sa:

~ A==B compares contents of both

Care: implementations sometimes redefine method
equals()

« For object type X it holds:

. o 1] context set<x> sa, Set<x> sb inv:
» C of lists is 2| sa==sb <=>
3 (forall a in sa: exists b in sb: a.equals (b))
1 58
5 (forall b in sb: exists a in sa: a.equals (b))
590 Softvars Engrerng | RWTH Aschan

SE .

65

26.12.2023

Set and List Comprehension Comprehension: Excercise
. iation for i of integers and 1o for the it + Quite good expressiveness due to combination of the three forms
~ Set{'a'..'c'} == {'a', 'b', 'c'} ~ List{ x*x | x in List{1..6} } == — unfortunately, the UML 2 standard does not offer these forms
~ List{-1..1,3..7,14} == 2 List{1,4,9,16,25,36} ~ these have been borrowed from functional languages (Gofer, Haskell)
List{-1,0,1, 3,4,5,6,7, 14} - List{ m.time.asMsec() |

Message m in a.message }

General form of comprehensions with $expr and List{ z+"?" | x in List{"Spiel"”, "Feuer", "Flug"},

$description as placeholder for appropriate terms -+ Filter: y in List{"zeug", "platz"},
~ { $expr | $description } — List{ x*x | x in List{1..8}, 'even(x) } String z = x+y,
— List{ $expr | $description } ; List{1,9,25,49} z != "Feuerplatz" }
« Comprehension forms $description « Auxiliary result in y: =
~ 1:the Generator v in List/Set | - List{y | x in List(1..8}, write
new variable v, which iterates over the list int y = x*x, leven(y) }
~ 2:the Filter: a Boolean condiion ~List(1,9,25,49)
becomes powerful through combination with generator
— 3: Auxiliary result introduces local variable: v = expr + Compl i lements can rely on p
defined elements
201 Softare Enginaring | RITH Aschen S RWTH a2 Sofvars Engraerng | RWTH Aschan

Navigation along Collecti and A iations in OCL

Lets try:

- « 1) Set of bidders of auction a:
{ordered)

« 2) Set of names of companies involved in a: ‘

auctions bidder

(ordered} ‘

MBSE Message ‘ Company ‘
e . . N inv: #Time time #String name
8. Specifying Constraints and Invariants with the OCL context Class inv: ¢ + 3) Set of messages from auction a: ‘ ! ! ‘ ‘ "9 ‘
8.5. Associations in the OCL fnvanian
context Method
pre: Precondition * 4) Set of persons of a company c:

st: Postcondition

Prof. Dr. Bernhard Rumpe P

write

Software Engineering

«+ 5) Set of auctions in which the company c is involved:
RWTH Aachen

http://www.se-rwth.de/

S RWTH a4 Softvars Engnoerng | RWTH Aschen S
= e

Flattening Operator in Navigation Qualified Navigation

AllData

Set of auctions in which company c is involved: auctions bidder « Normal navigation: ad.auction evaluates to Set<Auction>

- c.persons.auctions

+ Qualified navigation: ad.auction[ident] evaluates to Auction
~c has type Company

{ordered) s !
e, s O —
-c. . lessage ompany « Examples:
would now have type i - - - |
but is flattened and has Set<Auction: ‘#Tlme time ‘#Slﬂﬂg name ‘ context AllData ad, Auction a inv: {ordered} | +
ad.auction[a.auctionIdent] == a &&
« Automatic flattening removes a level of hierarchy: ad.auction[a.auctionIdent] in ad.auction;

— operator “flatten” is inserted implicitly by navigation,

> « {ordered}-associations have natural numbers from 0 as index.
wherever a collection is available as output

s a.message[1].content != a.message[0] .content
c.person.auctions ==

{ p.auctions | p in c.person }.flatten

395 Software Enginearng | RWTH Aschen S RWTH a6 Softvars Engnoerng | RWTH Aschen S

=

e

66

26.12.2023

Quantifiers

forall and exists are the quantifiers known from
mathematics

Context definition behaves like a universal quantifier.
Logically equivalent are:

— context $Class $var inv: $P($var) ;

- inv: forall $var in $Class: $P($var);

« Computability: Quantifiers belong to first-order logic
(FOL) and may have infinite "quantification space”
But: object-valued quantifiers in OCL are interpreted
on the sets of the currently-existing objects.
~ these sets are finite:

hence the OCL quantifiers are “computable”.

+ Examples:

forall a in Auction, m in a.message:

2 a.startTime <= m.time;

3

4| exists a in p.auctions: a.category == "Clock"

6 [inv:

7 exists int a, b, ¢, n: n>2 & a*n == b*n + c*n
+ Some properties:

(forall x in Set{}: false) <=> true

(exists $var in $collExpr: $expr) <=
! (forall $var in 4collExpr: !Sexpr)

a0 Software Engincaring | RATH Aschen

SE = |™M

T itive Closure of A

+ OCL is a subset of first-order logic and thus cannot
describe induction of natural numbers or transitive
closure of a recursive association.

* TClosureTry tries to describe the derived
association that clique represents the transitive
closure of friends, but fails -- why?

« Example:

friends

A o [
e (-

1
2
3

context Person inv TClosureTry:
clique ==
friends.addAll (friends.clique)

s Softvars Enginserng | RWTH Aschen

SE:=.

Transitive Closure of Associations

+ TClosureTry is a logic formula with several
solutions: each solution contains the transitive
closure, but possibly more:

x) friends friends - 1 [context person inv TClosurerry:
eter mary iohn 2| clique —
3 friends.addAll (friends.clique)
clique dlique
@ eter . mary = fon) _
+ Based on the OD in (X) at least three solutions occur:
® - (a) the intended transitive closure
peter mary iohn ~ (b) another transitive solution
~ () a ‘maximal’ solution
~ ... and there are some more
s
(c) peter mary john

% ‘ Software Engiearing | RWTH Aachen

SE . |™M

T itive Closure of A iati -3

+ Math has proven: FOL cannot specify transitive
closure

+ Solution: use a predefined explicit operator **,
which builds the transitive closure of an association

- friends**

« The typing of the transitive closure is exactly like that
of the underlying association (in all 4 cases).

s (]
assoc™

B

context Person inv TClosure:
clique == friends**

assoc
assoc™

assoc
assoc™

(&] assoc

assoc™

a0 ‘ Softvars Engnoerng | RWTH Aschen

[A]
JAN
e]
[A]
JAN
e]
RWTH

SE .

Object Constraint Language (OCL) Summary

OCL is a textual specification language
~ for properties that UML-diagrams do not cover
— invariants, guards, derived attributes

OCL is similar to a First-Order Logic, but executable.
~ Boolean operators, quantifiers

Basic data types
~ Boolean, Integer, Real, Char
~ sets and lists

OCL is used in the context of UML diagrams
— types and functions for OCL expressions are defined
there

OCL provides good navigations along CD
associations

1| context Airport ap inv:
2| ap.arrivals.size < 300

3| context Airline al inv:

4| al.name == "KIM" mplies
5| al.flight.origin.name == { "Schiphol" }
6| context Airline al inv:

7| al.name == "KIM" implies

8 forall £l in al.flight:

9 £1.origin.name Schiphol" ||

10 £1.dest.name "Schiphol"

o1 Software Enginoaring | RWTH Aachen

P
MBSE

9. Specifying Behavior with the OCL
9.1. Queries

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

context Class inv:
invariant

context Method
pre: Precondition
post: Postcondition

SE .

67

26.12.2023

Queries

« Aquery is a method of the underlying object model
Aquery is free of side effects
~ attributes may not be changed!

« In CDs: use stereotype «query»
« Java code: undecidable, what is a query, but common
style to begin a query with get, is or has

The stereotype «query» is a promise to the users and
a commitment for the developer:
~ queries may only call other queries

+ Implementation in Java:
a) pragmatic: “hoping” on absence of side effects
b) conservative: analyze the methods for query property
Also use the try-catch approach for lifting when using Java
methods in the OCL constraints

Message

#Time scheduleTime ©

«query» +boolean isAuctionSpecific()
«query» +Auction getAuction()

e Software Engincaring | RATH Aschen

SE . |™M

Queries and Object Creation

+ Aquery may create new objects and manipulate them
~ example: building a collection as the result of a query

+ Old object structure has no knowledge of (links to) the new objects :
query result:

—~~\ temporary objects with links to
> the unmodified object structure

-

—
snapshot with the original
object structure

R

« Checking whether a method is a query requires a data flow analysis

04 ‘ Softvars Enginserng | RWTH Aschen S

Library of «OCL» Methods

The definition of reusable queries for OCL is often
useful
~ queries are part of the underlying object model
~ OCL does not need the definition of methods
(except in let-constructs)

Methods marked with the stereotype «OCL» are like
queries, but only used for specification and
simulation, not part of the product code

~ they can only be used in OCL constraints

Useful for a library of «OCL» methods
~ Like math functions, collection operations, etc.

these (static) methods: can be used in OCL when
the library is imported. Example:

min(Auction.bidder.age) >= 18

Person

«OCL» List<Message>
getMsgsOfAuction (Auction a)
receiveMessage(Message m)

«OCL»
OCL_Math_Lib
int sum(Collection<int>
int max(_Collection<int>
int min(_Collection<int>)
int average(_Collection<int>
List<int>_sort(Collection<int>

boolean _even(int)
boolean _odd(int)

05 Software Engiearing | RWTH Aachen

SE . ™M

MBSE

context Class inv:

9. Specifying Behavior with the OCL > Inv:
invariant

9.2. Function Specifications: Methods
context Method
pre: Precondition

Prof. Dr. Bernhard Rumpe post: Postcondition

Software Engineering
RWTH Aachen

http://www.se-rwth.de/

SE ..

Method Specification

« OCL for the specification of the effect of a method:
~ precondition describes what must be considered for the
method to work correctly
~ postcondition describes the effect of the method

* Meaning:
~ "If the caller fulfills a condition, then the called method
fulfills the postcondition”
~ inshort: “Pre implies Post”

« Precondition is an obligation to the caller
«+ Postcondition is a implementation requirement

« See also Bertrand Meyer: Eiffel programming
language

(context

1
2
3

context boolean BidMessage.isAuctionSpecific()
pre: true <
result

pos true

Means: no restrictions on the
pre-state at the time of call

Means: result is simply always the value
true in subclass Bidmessage

+ Context now is a method defined by method
signature (incl. its class)

+ resultis a special variable available in the
ition, denoting the methods result

~ contract (contract between caller and i)

07 Software Enginoaring | RWTH Aachen

=

Example: Method getAuction()

auctions bidder

ordered) |, .

Message

«query» +boolean isAuctionSpecific()
«query» +Auction ~ getAuction()

+ Example:

The method Message. auction of a

) returns the
— context Auction Message.getAuction ()
pre:

post:

write

08 Softvars Engnoerng | RWTH Aschen S
e

68

26.12.2023

Example: Method getAuction()

@pre-Operator: Attribute Modifications

Person

{ordered) },

Message

«query» +boolean _isAuctionSpecific()
«query» +Auction getAuction()

+ Example:
The method Message.getAuction() returns the associated auction of a message:

context Auction Message.getAuction ()

pre: isAuctionSpecific() <

Person

-List (Message) msgList
int msgCount

addMessage (Message m)

. adds a new message, the ti of which must be newer than the last one:

context Person.addMessage (Message m)

pre: (msglist.isEmpty || m.time > msgList.last.time)

& !(m in msqgList)

—
dd (m) attribute@pre allows to access the
state at method invocation time

post: msglist == msgList@pr

post: this in result.message " queries can also be used here
A - && msgCount - msgCount@pre == 1
~ “this" refers to the object
that belongs to the method
w Sofre Engineting | RWTH Aschen S RWTH a0 Sotvre Engineerng | RWTH Aschen S RWTH
Semantics of a Method Specification E : Complex, C: Specifications
* (Aninvariant is interpreted based on one object structure (snapshot)) Person e Company
int employees

+ A method specification uses two snapshots:
start snapshot for the precondition and

— end and start hots for the postcondition: . " ; .

end and start snapshots for fhe postcondition a "snapshot" describes an object structure

" at a certain moment of the runtime of the system
/

one object
\

timeline

\end snapshot for the method call:
here the postcondition applies
(in relation to the start snapshot)

) method call

start of the method call:
this is the start snapshot

ar Software Engieing | RW

changeCompany (String name) Sting name

« changeCompany() allows a person to change the company
~ if necessary, a new company is created
number of employees in the old and new companies will be changed

« This is a relatively complex situation, so we divide the specification into several cases
1) new company already exists
2) new company does not yet exist

a2 Softvars Engnoerng | RWTH Aschen S RWTH

="

Complex Specifications — Case 1

Person o Company
int employees
changeCompany (String name) 1| Sting name
« Case 1: new company object already exists
« Constraint: new company != old company
— context Person.changeCompany (String n)
=n

pre CClpre: company.name != n && exists Company co: co.name =

" post CClpost: company.name == n &6

company .employees company.employees@pre +1 &&

company@pre .employees == company@pre.employeesépre -1
7

. \
pre-/postcondition with names old Sompany, old nr. of empleyees

a ‘ Software Enginearng | RWTH Aschen

Complex Specifications — Case 2
Person o Company
int employees
changeCompany (String name) 1| Sting name
« Case 2: company object does not exist yet
context Person.changeCompany (String n)
pre CC2pre: !exists Company co: co.name == n
post CC2post: write
s Sotvars Engneerng | RWTH Aschen S RWTH
o

69

26.12.2023

Complex Specifications — Case 2

Person Company
int employees
changeCompany (String name) 1 Sting name

« Case 2: company object does not exist yet

~ context Person.changeCompany (String n)

In Det:

@pre in Postconditions

« Example situation is illustrated by two object diagrams
OD 1and 2

+ John moves from c1 to newly created c2.
+ We evaluate the following expressions in the
postcondition:

1

john. company . employees =

Person

before method execution

employees =4

pre CC2pre: l!exists Company co: co.name == n 2| john@pre.company . employees = pan
post CC2post: company.name == n && employees =
3|john. company@pre . employees =
company .employees == 1 && B
company@pre . employees == company@pre .employees@pre -1 && 4|john. company@pre.employees@pre == [cl:Company |
. - employees =3
isnew (company) ___ operator isnew() describes 5|john. company . employees@pre
" thatanobject was created after method execution
i ot Evpnearn | RUTH Aachon S RWTH e Sotvar Engoosg | RWTH Achen
In Detail: @pre in Postconditions c ition of ifications

« Example situation is illustrated by two object diagrams
OD 1and 2

« John moves from c1 to newly created c2. employees =4
« We evaluate the following expressions in the

postcondition: before method execution

« If the precondition is false, there are multiple
interpretations:
a) a program should detect errors and stop.
b) a program should notice errors in the log and continue
as robust as possible.
c) the specification perspective:

Nothing is stated. -
T john. company . employees 1 In particular, the postcondition need not be fullfilled. ﬂ (C‘_’"‘P°5""’)")
- N In case C,
i " ocL
. fully evaluated in the state after the memd_ia” « Case a) , b) can be used for defensive resp. robust
2|john@pre.company . employees =1 pany “ograrnmin 1] context method()
— reference to the object john does not change: john==john@pre prog 9 2(pre: Apre || Bpre
3| john. company@pre . employees 3 ploy . o 3|post: (Apre' implies Apost) &&
company@pre is ¢1; c1.employees uses the current state of c1 + Case c) is ideal for specifications: It allows 4 (Bpre' implies Bpost)
o sonsoTEeny@re o1 1 eTployess e e [ciCompany | compositonof partal specfcations
i i . it ~ if one of the two conditions is true, the corresponding
. IOh:ccesses ongm:lncb{ecl c1in the original co=ndltlon employees =3 postcondition must hold « Apre" is modified: Attributes, like var, become
3 - -employ after method execution — if both preconditions hold, also both postconditions. var@pre in the postcondition.
ar Softere Engioaring | RWTHAachen S RWTH s1o Sotuare Engioeerng | RWTH Aschen S RWTH
e Do
The Underspecification Principle with OCL The Underspecification Principle in OCL: Incomplete Characterization

« Underspecification is the ability to describe the
desired range of allowed behaviors
(instead of a single, determined behavior)

context int random(int x)
pre: x>=1

2

3|post: 1 <= result && result <= x
« Advantages:
Easier to specify
Can be well combined with variant-building and 4| context int choice(int x, int y)
methodical refinement o|pre: true
6|post: x == result || y == result

« OCL postconditions are a perfect way to underspecify
— explicit choice of solutions
range of possibilities
+ eg. because of (yet) unknown requirements
approximated results

)

8
o

context float solver (Function f)
pre: exists x: £(x)==0
post: -0.0001 < £(result) < 0.0001

OCL assists controlled, explicit underspecification as specification principle ‘

10 ‘ Software Enginearng | RWTH Aschen

S

In general, a method specification can be incomplete

It focuses on the essential functionality and leaves
open further details to the programmers
principle of angelic programmers/developer

+ A demonic developer could obey the spec and still
~ change silently other objects or attributes
create/delete other objects

« For more precise restrictions, there are so-called
“frame-rules”
~ only the explicitly mentioned attributes and objects may
be modified
— implicit all others remain and are
only adjusted when explicit invariants enforce this

context Person.addMessage (Message m)
pre: (msglist.isEmpty ||
m.time > msgList.last.time) &&
!(m in msgList)
post: msglist == (msglist@pre).add(m) &&
msgCount == msgCount@pre +1

a0 Softvars Engnoerng | RWTH Aschen

70

26.12.2023

Code Generation from OCL

+ Many constructs of the OCL are implementable
~ use of the try-catch construct for errors
~ collections can be mapped to Java

~ quantifiers can be implemented with (slow) iterators constructive
solution (when found)
« Invariants / pre- / postconditions can be evaluated ; ”1:::dP::’°“ ‘() (
and thus used in tests 3 assert true; / precondition for testing
~ explicitly specify, where to evaluate: like Java asserts. a age = age+1; //postcondition manual
— efficiency considerations: evaluate invariant on object 5 }
changes only of incAge()
« infrastructure needed to observe object changes 1| class Personsub extends Person {
2| void incage()
« From ti ive code 3 assert true; //precondition
can be generated: But, not always and not always 4 agePre=age; //store old values
unambiguous. 5 super.incAge () ; //call the real method
5 // posteondition
7 assert age == agePre+l;
s
IR
a Softare Enginaring | RITH Aschen S | RWH

Summary Method Specification

OCL does not have method definitions but uses the
underlying object system.

+ OCL uses contracts, i.e.
— preconditions and
— postconditions
to specify methods

Methods belong to an underlying OO model
~ e.g. in the product code

— in tests

~ in simulations of physical objects

OCL specifications can also be used for behavior
specs of physical objects (or humans)
— Deficits:

= no continuous behavior, but discrete

+ Builds on method calls, and not on message passing

1] context Person.incage ()
2|pre: true
3| post: age == age@pre +1

Snapshots:
precondition

postcondition

timeline

method call

az Softvars Enginserng | RWTH Aschen

SE:=.

MBSE

9. Specifying Behavior with the OCL
9.3. Specifications of Streams Processing Functions

context Class inv:
invariant

context Method
pre: Precondition
post: Postcondition

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

Revisited Example: Simple Adder

The Adder component has as signature:

~Nx x Ny » Nz

« actually over time it processes streams of inputs:
~ stream<N> x X stream<N>y - stream<N> z

A choice could be to implement it via repeated call of

method “doAdd” (written in OO style):
~int doAdd (int x ,inty)

+ Spec omits:
~ Timing details
~ Absence of values (or waiting on values) on x or y inputs

« Care: “delivery” of incoming values to the appropriate
method calls is often a schematic task based on
explicit scheduling

pre: true

1] context Adder.doAdd(int x, int y)
2| pre: tru
3| post: result = x + y

standard OCL: used a method concept

4| spec adder

5| port in int x, int y;
6| port out int z;
7

il

9

SpesML is a currently developed
function oriented specification language

a2 Softvars Engnoerng | RWTH Aschen

SE ..

Revisited Example: SumUp (with State)

Building sum of arriving numbers:
~ We use an internal variable N s
~ and as specification this invariant: s'=x+s A

+ Achoice could be to implement it via method “dolt”
with the same signature (written in OO style):
~ N doAdd (Nx) resp.
— int doAdd (int x)

State s is stored as attribute in the respective class post: s = xts@pre && result = s@pre

“SumUp”

11| spec sumup
12| port in int x;
13| port out int y
14| state int s

+ Again: SpesML style is compact (no CD needed)
— and SpesML can also handle several output channels

t
17| post: s = x+sépre && y = sepre
s Softere Enginerig | RWTH Aschen S RWTH
=

Revisited Example: R-S-Flip-Flop

R-S-Flip-Flop

~ is composed of two NOR and a Delay
— includes a feedback loop:

~ this allows to store a state (a bit)

spec NOR
port in boolean x, y;
port out boolean z;

pos

x &6 ly <=> z

11] spec Delay<T>
12| port in T x;

13| port out T z;
14| state T buffer;
15(-- -

16| post: buffer = x && z = buffer@pre

« The composition can be represented graphically,

logical NOR

* but equi as textual

1) formula:

21| spec RsFlipFlop
22| port in boolean R, S;
23| port out boolean Q;
2

elay<boolean> (
26 NOR(S, NOR(R,Q)))

a2 Softvars Engnoerng | RWTH Aschen

71

26.12.2023

an unreliable

* Medium
device:
~ It may transport a signal (data) or may drop it
~ This behavior is nondeterministic in nature.

~ For simplicity: Medium does not replicate, alter or delay
data, nor does it switch the order of data

~ Specification dout =din v dout=¢

Data din

Data dout

Summary Function Specification with SpesML

+ SpesML is a logic derived from OCL
— it specifies behavior of cyberphysical functions
~ with discrete behavior
(i.e. message passing over channels)

+ SpesML builds on the OCL logic and its contracts, i.e.
~ preconditions and
— postconditions
to constrain the inputs and relate them to outputs

+ SpesML specifications are dedicated for behavior

1| spec Medium<pata>
2| port in Data din;
5| port out Data dout
4

11] spec sumup
12| port in int x;
13| port out int z;
14| state int s

* Remarks: specs of software components, physical objects (or 6
cation i . . 1] spec Medium<pata> P P » Phy:) 16| pre: true
~ The specification is based on a curzenl snapshot 2| port in Data din: humans) 17|post: s = x + s@pre & y=s
behavior and cannot specify e.g. 9% success rate 3| port out Data dout _ Deficits:
4| == + no continuous behavior, but discrete
5| dout = din || dout = epsilon
i Softers Engnserng | RWTH Azchen S RWTH ™ Sotvre Engineerng | RWTH Aschen S ‘ RWTH
A Note On R Definiti | Stateful Beh
« Traditionally calculus is used to describe physical Sv
behavior (continuously) a= St
~ Derivations condense history into infinitely small time
frames

« Digital theory uses discrete changes of states,
events, signaling
~ Transitions with instant changes based on state

Recursion (i.e. a system continues its behavior based
on its past) leads to significant differences in:

— the used forms of "solving"

— possible "executions”

~ numerical or similar simulations

~ Digital processes

base on fixpoint theory
— Continuous processes I

base on calculus

29 Software Engiearing | RWTH Aachen

MBSE

10.1. Introduction

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

10. Modeling Instance Structures with Object Diagrams

SE ...

Objects in the Physical World (Systems Engineering)

« Asystem consists of a dynamically changing
number of physical objects

Objects represent entities of the domain and
instances of exactly one class

An object can be uniquely identified class
LightBulb

%_

An object has a state as defined by its properties
— result of an operation depends on the current state

« An object has a behavior modelled by the
functions of its class

Kinds of objects:

+ Muhammad Ali, Albert Einstein of class “Person”

+ The car with plate “AC-P-23" of class “Car”

« The software object at address Ox... of software class “Insurance”

objects

ot Software Enginoaring | RWTH Aachen

Object Diagrams

An object is an instance of a class.

+ Object diagram shows a concrete situation (snapshot) in
a system run
~ concrete, named objects
- specific attribute values
- link structure between objects

+ Obiject diagram shows a single, possible situation
= vs. class diagram characterizes all possible situations

« ltis possible that the situation shown in an object
diagram occurs never, several times, or even
simultaneously

«+ Application patterns
- Static structures without (much) dynamic changes
— initial situations for system startup
~ undesirable situations, ...

this is an

object -,
diagram

long auctionldent =912
String title = “420t copper’
fint numberOfBids =0

theo:Person

personlident = 1783
name = “Theo Smith”
isActive = false

participants

p2:Person
personlident = 20544
name = “Tony Brown”
isActive = true

participants

a2 Softvars Engnoerng | RWTH Aschen

S i

72

Class Diagram of the Auction System (excerpt)

AllData
String login
e ;

! 31
Auction ... | auctions bidder Person
+long auctionldent - participants o+ personident
#String title observedAuctions observers| #String name
-/Money bestBid Jobservers 2 #String login
2fint numberOfBids -boolean _isActive

-Protocol log | {ordered, addonly}
[[Message

(ordered, addOnly) #Time time
{frozen) {frozen) [W i
1 1 ‘
interface»” | | «interface» | aperson bidder #Auction auction
BiddingPolicy TimingPolicy | | #auction auction #int newStatus

#Money bidValue

#int graphSymbol
#Time _ biddingTime

a ‘ Softare Engineering | RWTH Aschon

MBSE

10. Modeling Instance Structures with Object Diagrams

10.2. Language

[Coe Jr ackDoe Person fed

BMWFans. smim. —
Prof. Dr. Bernhard Rumpe SocelGrom et T st peson|
Software Engineering ey
RWTH Aachen DekePlavers: [

SocilGrow
http://www.se-rwth.de/

RWTH

S o=t

26.12.2023

Example: Single Object

Example: Single Object

electricPower:Auction
+long auctionldent = 783
#String title = “Electricity, 7GW"
~/Money bestBid .
2/int numberOfBids = 112

Number of valid
bids is to be
calculated
from Message List

-Protocol log

discuss

object name and type

visibility information \
and other tags — \

can be specified electricPower:Auction

+long auctionldent
] #sting tite = *Electicity, 7GW

-/Money bestBid .
numberOfBids = 112

derived attributes

marked with*/* 2int
L
class attributes are ~Brotacal !

underlined (they are not
often given, since they are

the same in all objects of no method list

this is an object
diagram(OD) _

attribute list:
?ype, attribute name and value.
‘ypes and values can be omitted.

~—comment

Number of valid
bids is to be
calculated

from Message List

p——

the class) is defined here!
s Sofrs Erginring | RWTH Aachon S a Sotuare Engioeerng | RWTH Aschen S RWTH
= s
Example: Link Structure Example: Link Structure
links of the "participants” bi-directional navigation

theo:Person
=1783
name = “Theobald Schmidt’
String title = *420t copper” articipants " -
isActive = false
fint numberOfBids =0 Jobservers
ofto:Person

personldent = 20544
name = “Ottokar Huber"

discuss

association

(but no multiplicities)

theo:Person

copper912:Auction "’

long i =912
String title = “420t copper”
fint numberOfBids = 0

¢

otto:Person

link of the composite ~~
to its component

derived
association

«interface» "’

personldent = 20544
Iname = “Ottokar Huber"
isActive = true

several

:BiddingPolicy

lisa:Person

stereotype illustrates
that this is an interface

personldent = 45392
Iname = “Elisabeth Miller"
isActive = true

=1783 (’—\

Iname = “Theobald Schmidt”
isActive = false

of the same class

objects

interface» isActive = true
idingPolicy
lisa:Person
personlident 5392
name = “Elisabeth Miiller”
isActive = true
s

43 ‘ Softvars Engnoerng | RWTH Aschen

SE .

73

26.12.2023

Terminology

+ Object
~ object is instance of a class
— attributes have a value (but need not be shown)
~ object diagram uses prototypical objects

«+ Object name for identification of the prototypical
object

« Attribute describes state of an object
~ always: attribute name
~ optional: type, value, and visibility

« Abstract object diagrams use variables and
expressions instead of concrete values

« Link is an instance of an association between objects
~ optional: navigation direction, association and role names

long auctionldent
String title = “420t copper”
fint numberOfBids = 0

theo:Person
personident = 1783
name = “Theo Smith”
isActive = false

participants

p2:Person
personldent = 20544
name = “Tony Brown”
isActive = true

participants

Exercise

+ Goal: Dealing with OD
(not with perfect content, but syntactically correct):

+ Design ODs that characterize the following situations
(with the most interesting relationships between the
involved elements):
~ your family with their residences

~ an aircraft and its technical equipment

~ a (multi) flight connection for the guest “Wolfgang™ on
24.2024

home

™ Softers Engnserng | RWTH Azchen S | RWH 0 Sofvars Engraerng | RWTH Aschan S . | RWTH
Representation of an Object Links in Qualified and Ordered Associations
* ...is possible in many ways * Qualified links usually contain the actual value qualifier
~ In the BMWFans example it may be a nick name -
doe
object name: type anonymous object only the object name ’ :l\'\ﬂ/
marked with itype ~ Special form: BMWFans: i
< (an attribute of the target object can be used as qualifier SocialGroup E\-
doe2 |
:Auction = electricity ~—_

electricity:Auction

ftlong auctionident = 783
#String ftitle = “E++, 7TGW"

ong auctionldent = 783
String title = “E++, 7GW"

auctionldent =783
title = “E++, 7TGW”

bestBid

-/Money bestBid
?/int numberOfBids = 112

-Protocol log

numberOfBids

attribute types
are omitted

* Representation indicators “..." and “©” indicate completeness of the attribute lists.

« Links of an ordered association use integers as
qualifiers
~ In the example auction, the list of messages is shown

— the list shown does not need to be complete

for an ordered
association the

johr
Person

qualifieris a
numerical index|

aan Softere Engioaring | RWTHAachen S RWTH w2 Sotvare Engiosarng | RWTH Aschen S RWTH
= o
Composition in the Object Diagram Alternative Repr of the C
(@)
« Class diagram (a) * ... by graphical containment
is of course ok « Nesting is possible
« Both diagrams are equivalent (except for missing navigation information)
copperd12:Auction

« Object diagram (b) is allowed

* (c) and (d) contain illegal composition structures, because one object belongs to several composites

@)

Invalid structures due to

)

the common partial object

“a Software Enginearng | RWTH Aschen

. . DD :Aucti
Link of the composite copper912:Auction
to its long =912
String title = “420t copper”
fint __numberOfBids = 0

bidPol:Biddi v} timePol:TimingPolicy |

long auctionldent =912

String title = “420t copper”
fint numberOfBids = 0

bidPol:BiddingPolicy | <1

timePol:TimingPolicy

—

Component is
included graphically
in the composite

44 Softvaro Engnonrng | RWTH Aachen

S

o

74

MBSE

10. Modeling Instance Structures with Object Diagrams
10.3. Meaning and Use

BMWFans:
Prof. Dr. Bernhard Rumpe SecilGrou
Software Engineering

http://www.se-rwth.de/

ey

oz

—

RWTH Aachen DoKePlayers: [
SocilGroup

S

26.12.2023

Semantics of an Object Diagram?

+ An object diagram is exemplary PR
" . DD :
~ As opposed 1o a CD, which describes sets of possible copperd12:Auction
object structures auctionldent = 912

numberOfBids =0

What is the meaning / semantics of such a diagram?

For which purpose can object diagrams be used?

(4
| bidP
L

N discuss

s Softvars Enginserng | RWTH Aschen S
o

Semantics of an Object Diagram

Model Incarnation vs. Instance in the System

« Exemplary means that
— there can be more than one incarnation of the diagram
~ there need not be any incarnation
~ the number can vary over both time and the various
system runs

« Do not confuse prototypical objects (‘rectangles”) in
the diagram with objects of the system
~ there is no 1:1 relationship

fint

aTypical:Auction
String title
numberOfBids = 62

=420t copper”

Expressiveness of object diagrams is very limited, ;viur

} timePol: Timing

e.g., properties like these, cannot be expressed:

— “this OD is valid exactly once.”

~ “this OD is valid at beginning”

~ “this OD never occurs”

~ “attribute X is within the range [-5,5]

+ OD and CD are models, but there is a kind of “model-instance” relationship between both of them: we call this
“model-incarnation”

+ System objects “instantiate” prototypical objects in the OD and also classes of the CD: but these are three
different forms of “instance”

“model incarnation”
aclass in

oD | class diagram

a prototype

object in the fopY

object diagram

+long ~ auctionldent
#String title

long auctionident
String title="Electricity counter”

models

“prototype instance” “instance”

—

snapshot: the system at a specific moment
with an object structure in it

.real" objects of the system

wr Software Engiearing | RWTH Aachen

=

m Softere Engineering | RWTH Aachen S

Object Diagrams and Class Diagrams

Interpretation of OD’s in the System

« There are many relations between CD and OD
~ classes must exist for objects

— attributes of the OD must be defined in the CD
= and have the same type
~ links must match the corresponding associations
~ multiplicities are obeyed
~ ete.
+ These manifest in syntactic consistency conditions

« Representation Indicators “..." and “©" in both
diagrams allow omission or indicate completeness

« Interesting questions
— Which syntax checks applied when during development?
~ Can a CD be derived from exemplary OD's?

— Which object structures can be derived as test examples
from a CD? ”

[on) ===

« Interpretation like with classes in a CD:
~ the real objects (on the street)

M: Sy - Sem . ﬁ?
~ «systemy.. machinery, ... «data» M: Sy - Sem —_—
— «component»... machine elements, ... :Car

types of energy
humans, animals, ...
for object structures,
and other forms of data
~ no stereotype = no fixed interpretation

~ data objects
« Stereotypes apply:
~ «material»... elements, alloys, ...

+ More fine-grained stereotypes are possible, e.g:
~ «signal» ... data sent around
~ «subsystem»
~ «item»

g Software Enginoaring | RWTH Aachen

50 Software Enginoaring | RWTH Aachen S

75

26.12.2023

Methodological Use of Object Diagrams

Various usage possibilities

« exemplaric situations for discussion with users
architecture description of static parts
(i.e. a situation that always applies)

« precondition for a method call
postcondition for a method call

undesirable situation

initial situation for a test
expected result of a test

« Desirable:
~ 1) Combining ODs with OCL to describe logical parts
~ 2) Systematic code derivation from an OD

Prototypical Objects: OD as Matching Pattern

biddingTime

welcome:

st Software Engincaring | RATH Aschen

SE=.|™M

+ An object diagrams can be understood as a pattern

~ Prototypes in the OD are patterns that can match
real objects

_ through i iptions of String title

objects give freedom

a:Auction

« In addition OCL allows to restrict timePol:ConstantTimingPolic

further, example:

int status = TimingPolicy.READY_TO_GO
boolean isinExtension = false

1] extensionTime = 180s
2| start.time + 2h <= finish.time;

startTime ---
« Possible Uses: long time finish:Time -
~ for testing and for programming

= Model situations with ODs instead of

pattern it to gnize certain g
situations
s2 Sofvars Engraerng | RWTH Aschan S RWTH

Prototypical Objects: OD as Matching Pattern

« An object diagrams can be understood as a pattern
~ Prototypes in the OD are patterns that can match
real objects

« Abstract values are modeled by terms with variables

« Example: messages are ordered in the list in order of

their timing
1] context Auction a,
2 int n, k,
3 Time t1, Time t2 inv:
1 n<=k implies
s t1.timeSec <= t2.timeSec

* Use:
~ 2 Model parts of logic formulae with ODs instead of OCL
to recognize certain properties and situations

BidMessage |
BidMessage #Person bidder
#Person bidder
biddingTime

Prototypical Objects: OD as Instantiatable Template

3 Software Engiearing | RWTH Aachen

SE-.|™M

+ An object diagrams can be understood as a template
~ Objects and their links in the OD are used to inatantiate

long auctionldent = 32
real objects accordingly

String title = “TestAuction”

« In addition OCL (or PL code) allows to combine ODs
~ By using OD by their name (e.g. OD.Pers)

participants Person
N . personldent = 1000+x
« Possible Uses: login = log” +x

~ for testing and for programming name = “Tester” +x

isActive = (x%3 == 0)

~ =2 Model OD templates instead of handcrafted patterns

algorithms to instantiate object structures attributes are defined by embedded

OCL expressions (with free variable x)

1] context Auction test32 inv MyNewTest32:

forall int x in {1..100}: OD.Pers;

a5 Softvare Engnonrng | RWTH Aachen S
froey

Methodical Use of ODs with OCL

« Each OD can be understood as logical constraint
(with free variables and named accessible objects)
OD describes an exemplaric situation

Variables allow abstraction: “abstract values”

« OCL e.g. describes relationships among attributes
+ OCL allows combination of object diagrams

~ composition OD.A && OD.B

— forbidden I0D.A

~ alternatives ODA || OD.B

~ multiple instances forall int x in {1..100}: OD.A
« Usage in

~ method specifications (pre-and postconditions)
— description of the effect of constructors / modifiers

BidMessage
#Person bidder

biddingTime

long time
:Person
personident = 1000+x
login = "log” +x

nam “Tester” +x

isActive = (x%3 == 0)

Code Derivation from Object Diagrams

55 Software Enginearng | RWTH Aschen

copper912:Auction "
long auctionldent =912
String title =“420t copper”
fint __numberOfBids = 0

Code derivation / synthesis / generation from OD helps

1) OD as initial structure - code instantiates objects
and sets attributes, e.g. like in a sophisticated factory

Auction copper912() {

2| Auction a = new Auction(912);

3| a.setTitle = "420t copper"; - =

4| TimingPolicy timePol = new TimingPolicy(); | bidP | | timePol: TimingPolicy

5| timePol.setStatus (READY) ; Y/ L !

6l) int status = READY
isinExtension = false|

2) OD as matching structure

+ Many variants are possible, e.g.

boolean copperdl2Check (Auction a) { — Repair (i.e. objects exist and are partially adapted)

2 return a.auctionIdent == 912 && " . . M
3 a.getTitle == "420t copper" && — Marking (i.e. objects in illegal state are marked)
4 a.getTimePol.getStatus() == READY && ...; « Necessary: appropriate constructors, access to

} attributes, “pattern matching” algorithms, ...

50 Softvaro Engnonrng | RWTH Aachen S
=

76

26.12.2023

Summary Object Diagrams

+ Object diagrams are exemplary
— Close relation to class diagrams
~ Prototypical objects instantiate classes
— Links instantiate associations

+ OD can be applied to describe:
~ data in a system
— physical objects of the system: «component»
~ events in a system: «event»

« OD can be understood as logic formula
« OD can be used in programming and testing
— for discussion with users
— architecture description of static parts
~ precondition / postcondition for a method call
~ initial situation / expected result of a test

copper912:Auction "
long auctionldent =912
String title =“420t copper”
fint___numberOfBids =0

[bidPol Bigdi 1 ‘ﬁmePol:T' g

int status = READY
isinExtension = false|

st Softare Engineering | RWTH Aschon

(There is no chapter 11)

ase Softvars Enginserng | RWTH Aschen

S o

MBSE
12.1. SysML v2 Overview
Prof. Dr. Bernhard Rumpe

Software Engineering
RWTH Aachen

http://www.se-rwth.de/

12. SysML v2 as Systems Modelling Language

v

Four Pillars of SysML

Structure: Specification of hierarchies, ports,
interconnection, model organization

Behavior: Specification of sequences of actions, life
cycle of a block, message-based behavior

+ Requirements: Specification of requirements and
i ips among model el it

Parametrics: Constraints, enables integration of
engineering analysis and design models

crtl: Controller
-.

Tiogeiered]

O{aidate [sl oon PO

—1

e
Foo

1a= R0

[Text = “Acceleraion > § mis”

|fuelDemand : Reall demand

e
ENEET

it

25082 2540 T L St Pt s W S

et 521

1 S &

61 Software Enginoaring | RWTH Aachen

S RWTH 150 Sotvers Engooorng | RWTH Azchan S RWTH
e o
Examples of SysML Diagrams in Practice Examples of SysML Diagrams in Practice -2
- - o x B Mg 50 - = =
x i Ve e S O e i W %
B PP A N vy
Bty vy % |07 % St B | s | B vt wa

=

a2 Softvars Engnoerng | RWTH Aschen

77

26.12.2023

Notes

+ APractical Guide to SysML, by Sanford Friedenthal, Alan Moore, and Rick Steiner,
I by Morgan Publi: Copyright 2009 Elsevier Inc.

« Lecture Introduction to Model Based Systems Engineering read by Joseph
Wolfrom of the John Hopkins University. All rights reserved.

« Systems engineering is subject of ongoing research

Clarification: SysML vs. UML vs. Systems Engineering

+ Model-Based Systems Engineering # SysML
— May use SysML but not limited to it

+ SysML is not a methodology or a tool
~"SysML is a modeling language
— SysMLis independent of methodologies and tools

+ SysML is not intended to replace current modeling
techniques of the other engineering disciplines

Maschinenbay oEMs. (CAD, Simulink, ...)
T AL o — SysML intends to connect to others to allow for model
nveking | S interoperation
mm s Wz Industriepartner 5::": - a “single-point-of-truth system model” might use SysML
—] —— centen
— = o
Forschungssiatagie
e Softers Engnserng | RWTH Azchen S RWTH a4 Sofvars Engraerng | RWTH Aschan S RWTH
=N unin
Relationship Between SysML and UML as Concept Model
SysML Diagram
« SysML reuses 7 of UML's 14 diagrams, and adds 2 /\
new diagrams -
~ requirement and parametric diagram ‘ |
. . Behaviour Requirement Structure
+ The most important two: ‘ Diagrams ‘ Diagram ‘ ‘ Diagrams ‘ MBSE

- Block Definition Diagram (BDD)
~ Internal Block Diagram (IBD)

« which are similar to resp. Activity Sequence Block Internal Package
derived from Diagram || Diagram Definition Block Diagram

~ Class Diagrams Diagram || Diagram

~ Object Diagrams

5 Software Erginearng | RWTH Aschen, S RWTH

12. SysML v2 as Systems Modelling Language
12.2. Structure

v}

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

S =ty

Blocks in SysML

Ablock is a modular unit in SysML that is used to
define types of physical entities
e.g.: system, system component, ...

«block»

compartment
label

The SysML block is based on the concept of UML

class, but extended and interpreted in the physical

world as

— software, hardware, data, processes, material, energy,
personnel, facilities, requirements, ...

allocatedFrom < |
«activity» ModulateBrakingForce
values

dutyCycle: Percentage

In contrast to a UML class
Blocks feature various optional compartments that . Block is a stereotyped extension of a UML class
enable to describe block characteristics, e.g. « SysML Blocks extend the syntax of UML classes by
distinguishing among various kinds of properties

~ Blocks include Ports for physical flows ~ parts
- values
+ The semantic interpretation of blocks differs from software
classes
o7 Softer Enginoaring | RWTHAachen

SE = ™M

Blocks as Basic Structural Elements

« Flow Specification Block: inputs and outputs are flows
~ Aflow property signifies a single flow element to or from a
Block

«block»

compartment
!

labei
allocatedFrom < | —
«activity» ModulateBrakingForce
values

« Interface Block: to support nested ports

Constraint Block: integration of engineering analyses

dutyCycle: Percontage

Domain Block: ... a component, location, or person

+ Multiple compartments to describe blocks
~ properties (parts, references, values, ports) and
operations (ca. C
~ constraints (used similar to OCL)

External Block: Represents an external actor

System Block: for structure organization
Subsystem Block: for structure organization “allocations” from/to other model elements (i.e. where the
System Context Block: system embedded in its information comes from)
context ~ requirements the block adresses

~ ... and user defined compartments

a8 Softvars Engnoerng | RWTH Aschen S
oo

78

26.12.2023

Flow Specification Block

« Specifies inputs and outputs as a set of flow properties
compartment

that list can be displayed in a flow properties

« Flow specification is used to type Flow Ports, in order to specify items which can flow via the ports
« AFlow Port of type FuelFlow can (in this case) bidirectionally receive and emit Fuel

+ May use both directions but does not need to

«flowSpecification»

FuelFlow

flow properties
out fuelSupply : Fuel{readOnly}
in fuelReturn : FuelreadOnly}

80 Software Engincaring | RATH Aschen

Interface Block

+ Special kind of block for typing proxy ports
~ no behavior or intemal parts

« Contains a set of flow properties that can be shown in the flow properties compartment

«interfaceBlock»
ICE
flow properties

out engineData : ICEData
in mixture : Real

in throttlePosition : Real

an Softvars Enginserng | RWTH Aschen S RWTH

Constraint Block

« Provide mechanism for integrating engineering
analysis with other SysML models, such as
performance models

«constraint»

. — facilitates a more detailed modeling of actors like ports or
~ reliability models N constraints part of the system knowledge internal structures
AU {x(n+1) = x(n)+v*5280°3600"dt}
parameters
« Constraint blocks can be used to specify a network of v Vel «domain» «external»
constraints x : Dist AutomotiveDomain Road
— represent mathematical expressions that constrain the values
physical properties of a system parts incline : Real
~ not typed or checked... HSUV : HybridSUV
properties «——_
+ Driver
: Passenger
: Maintainer general superset of the other
property types of a block
m Sotwars Engneadng | RWTH Azchen S RWTH 2 Sotvare Engiosarng | RWTH Aschen S RWTH

Domain Blocks and External Blocks

+ Domain Block
represents an entity, a concept, @ location, or a person
from the real-world domain

« External Block
block that represents an actor

System Blocks and Subsystem Blocks

« System Block
artificial consisting of blocks that pursue a common goal
which cannot be achieved by the system's individual
elements
can be software, hardware, a person, or an arbitrary unit

«system»
Hyl ISUV
parts
¢ : ChassisSubsystem = ¢
p : PowerSubsystem = p
b : BodySubsystem

Subsystem Block
typically a large, encapsulated block within a larger
system
any Block can be converted to a Subsystem if you decide
that the appropriate Block is decomposed

«subsystem»
PowerSubsystem
parts
fuelSupply : Fuel
i1 : ElectricCurrent
references
fuelReturn : Fuel

System Context Block

references
values fuelReturn : Fuel
fuelFlow : FuelFlow values
sn:ID
S Softer Enginoaring | RWTHAachen S RWTH a7 Softvars Engrerng | RWTH Aschan S RWTH
= =

+ Virtual container that includes the entire system and its actors

« Any Block can be converted to System Context if you decide that the appropriate Block is decomposed

«system context»
Car

constraints
fuelFlow : FuelFlow
parts
fuelSupply : Fuel
i1 : ElectricCurrent
i2 : ElectricCurrent

79

MBSE

12. SysML v2 as Systems Modelling Language
12.3. Block Definition Diagrams

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

SE- ™M

26.12.2023

Block Definition Diagram (BDD)

. structural elements called

SysML)

B-I.ocks, their and

bdd Structure [Automobile Domain] J

classification

« Describe relationships between blocks (\/

« Define structural features of blocks Driver
~ part properties
~ value properties
- ports

« Define behavior of blocks
~ operations resp. at least their signatures

Physical

«block»
Environment

— composite association - «block»
~ generalization Automobile
~ (no associations) A System

«block»
Baggage

«block»
Vehicle

esod
EN

&
¢
3
§
g

O

s Softvars Enginserng | RWTH Aschen

S o=t

BDDs rely on Composite Association

bdd Structure [Automabile Duma\rJ]

i i depict
parts that make up the whole

~ black diamond (like in UML)
~ role names can appear

ablocks
Camera

on the part end
lock «locks blocky «locks
. Semantics: ey Mount Assembly ooty Gamera Module
Composite is composed of parts vt \ " Parts
y ifeti azimut | - elevation image Processor Camera Housing
and pqns don’t change over lifetime| motor|, motor MPEG Converter Imaging Assembly
-> static structure Optical Assembly.

ablock»
‘Stepper Motor
Module

Value Properties

+ Used to model quantifiable properties of the system
that is (similar to attril

« Based on a value type, which describe the values for
quantities

Listed in compartments using the following syntax
~ value_property_name: value_type_name

Value properties
~ can have default values
~ can also define a probability distribution for their values

«block»

Optical Assembly

values
aperture : mm = 2.4

«normal» {mean = “7", standardDeviation =

focal length : mm

default value

5%}

probability distribution

« Describes a structural interaction point of a SysML
Block, which connects interacting parts of a block
~ equals interfaces in component and connector

architectures

« Flow port (ca. MontiArc ports)
— specifies what can flow in or out of a block
~ flow ports have a certain direction, which is indicated by
the arrow direction
~ flow port type is defined by name:type

coldWater| plockn hotWater
: Double! : Double

camera /O :
Cameralnterface

clevation gimbal azimut gimbal
ablocks
Pan Gimbal
i Sofaro Ergiraaing | RWTH Aschon RWTH s Solvars Engrasrng | RWTH Aachan RWTH
P S =
Ports Operations

~ written over the port symbol

« Standard port: specifies a set of required or provided
operations
— Observe: this is bidirectional: OO only has provided
operations
— But otherwise operations are like method call signatures

Route
Manage}mem

User

Lo%n

a0 Software Enginoaring | RWTH Aachen

Operations describe something that a block can do
Operations can have parameters

Operations are typically synchronous (requestor waits
for response)

Operations are listed in the operations compartment
of a block:

~ “operation name (parameter list): return type”
Equivalent to methods of CDs because BDDs and
CDs coincide

«block»

operations
CreateRoute() : Route

VerifyLoginDetails() : bool

Monitoring Station

DeleteRoute(in r : uint32)
CameraTestComplete(in om
\

note that the signatures are
language independent
and don't need to look like Java

a0 Softvars Engnoerng | RWTH Aschen

SE =

80

MBSE

12.3. Internal Block Diagrams

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

12. SysML v2 as Systems Modelling Language &

26.12.2023

Block Usage (vs. Definition)

enclosing block—

bdd [Package] Structure [ABS Structure Hierarchy] | ibd [Block] Anti-Lock Controller

«block» «block» «block» connector
Library:Electro- Anti-Lock Library::Electro- d1 : Traction
e processer | | Comroler |y vave g U e

activate : 5vdc

L m1:Brake
/ Modulator

 part/role

item flow

port

Definition « Usage

~ Block definition diagram (BDD) defines blocks (types) ~ Internal block diagram (IBD) defines the architecture of a
~ captures properties, etc. block using other blocks

— reused in multiple contexts and varying connections — It provides one concrete connection structure

~ (similar to class diagram) ~ (similar to object diagram)

S | RWTH ™ Sofvars Engraerng | RWTH Aschan S RWTH
Syntactic Elements IBD Context Block: A Vehicle System Context with External Interfaces
v enclosing block ibd Automobile Domain [Vehicle Context Diagram) |
« Enclosing block ibd [Block] Anti-Lock Controller | Physical E T
~ indicates that this ibd diagram defines the internal :Physical Environment
communication structure of a block connector . i
e | e
T Detector - gty 1
« Part/Role . o road if-1 [road|if-2
— define the role of the elements within the communication activate : 5vde
structure N
item flow Brak v Sensor Airy Wheelyx AWheel
« Port =) ’;od";; Input Force Force
~ indicates the inputs and outputs of a part driver sensor in_}, rL,air in
part/role :Driver Accelerator | :Vehicle
« Connector Cmd
— connects two parts respectively their ports oot if; Hthrottle in Toad if right
GearSelect rear
« Item flow [Emaaa’y 5 i
i B Bigear in Y oad if left
— defines the items (signals, messages) that are exchanged hand if
rear
o Softere Engioaring | RWTHAachen S RWTH o Sofvars Engosrrg | RWTH Aschan S RWTH
= ==
Modeling Standard Ports and their Connectors on an IBD Context Block Showing External Interfaces
- Standard ports specify interactions as services ibd Mobility Domain [Ticket Vending Processor Context] J
~ required interface specifies requests for services (socket symbol)
— provided interface specifies provided services (ball symbol)
ibd [Block] Surveillance System [UI and Monitoring Station Connections] |
Login
 Suppo Entry
User : (Semport : Monitoring Station Entry Time/Date Y Time/Date
Login login services [login services Camera
Q|Q Control
X o
user
fogin test feeback test feeback T
requests
Tost
Tracking
Credit Card
route requests [| route requests cStri
sonem o

81

26.12.2023

3 0
Mapping in SysML: Mapping Logic to Product Architecture The MontiArc C&C ADL Wz ¢4h.c

Repet\t\onr

ibd Logical Architecture_Venicle) + MontiArc is an ADL
[_ developed using MontiCore, CRequesteroc lboor

Button

Cmdopenciose
~ based on the stream approach >{ e E:I S
e Suttontval >
“LogicBlocks «LogicBlocks “LogicBlocks “LogicBloc | | _ for modeling software and ‘ —0 | oar
Sersing ABP Mol Moton anager Acting X button "
T T ; #’ system architectures g off

Iy |
| i
| | I ~ 4 1+ Logical Architecture: extensible with component
! pr— o atocates /[catocates | |~ Functions and - . (carComfort ‘
! fasocate :’ focate ""’“"‘”'\ <alocates tocaer /| ocsten |1~ ru to an Archi behavior languages | Driverfiequestct _— Door
! T ! 1 ,—>(ma—w’1 e
! A i : [[etoc |
| ! !+ Product Architecture: Autolockstatus fghistates [—————]
; | [I " Decision on HW/SW-realization * Most important MontiArc elements 7 comtonng [remoc |
! ||~ Hardware components ~ component: unit of computation i B L [—
i 1 § ~ interface: has typed, directed ports / BackDoor
| 1+ Next technical level would be: . hy: topol £ sub s e, 4
V| <componens o [i ~ Explicit inclusion of communication ~ hierarchy: topology of subcomponen! A
t Ifres P Throtte ~ connectors: realize communication paths (]
=N it
Comparison MontiArc and SysML (with respects to blocks) Summary
ivd ek v LockGonecior a5l || SysML |
« Both languages have much in common § « SysML
4d Posiagejruc L at: action ‘ <bloch 7
evose | _ i " . LibraryElectro-
- MontiArc SysML FM o) | | e Most import diagrams: 1BD & BDD P u
— component block - ¢ |- ~ Used for many purposes in Systems Engineering T
~ port port Ll m 7 Moauiator o
~ channel flow actonpuaco] [srasn oo Wodiatr
~ composition composition ~ Concepts:
= block,
- Differences: : drected por, [
— SysML needs separate diagrams (BDD & IBD) for = composition oo
definition and use of blocks - MontiArc only one 8 Mo
— SysMLincludes behavior languages, MontiArc allows activate : Side
language composition to select your own languages 1 Brake
« E.g. MontiArcAutomaton, Embedded MontiArc, = Modulator
MontiThings, MontiArc for KI
<89 Sofrs Erginring | RWTH Aachon RWTH 0 Sotuare Engioeerng | RWTH Aschen S RWTH
senems e
Actions
+ Used to model the steps of the activity
 Accept inputs and create outputs
e i :
« Can be hierarchically decomposed
H H * Again, actions are defined by an action definitions
Model-Based Software Engineering gain. 4
12. SysML Y2 as Systems Modelling Language cactions caction def
12.3 Behavior provi i
parameters parameters
in pwrCmd in pwrCmd:PwrCmd
Prof. Dr. Bernhard Rumpe out torque out torque:Torque []
Software Engineering
RWTH Aachen « They are used in industry (e.g., BMW, Daimler, Siemens) to model activity-oriented concepts
http://www.se-rwth.de/
S RWTH 12 Sotvrs Engioearng | RWTH Aschen S RWTH
= i

82

26.12.2023

Parts Perform Actions

Action Flow in a Nutshell

« Actions « At the top are (optionally) the actors/parts

wparts « Apart can perform an action — action parameters: inputs and outputs — actions of each actor are in a swimlane
b:Vehicle ~ special send and accept message actions
« Part decomposition can follow action decomposition
corowe " P P + Action flow
B oDk ~ successions: control flow P
provideBraking ~ inputs and/or outputs: object flow ot acions A
-~ ~ control nodes: control flow [l= i
«action» « decision and merge
providePower =« fork and join |
L (14» t'
eEngine « Filled circle: initial node : WM ‘ | :
perform ‘ |] . |(.W o nesirea | | I
providePower.generateTorque «action» «action» «action» + Bulls eye: final node I_Tm_i_a_;_ﬂ_/ ______ L
generateTorque amplifyTorque transferTorque [
\% -
@ Softare Enginaring | RITH Aschen S RWTH a0 Sofvars Engraerng | RWTH Aschan S | RWTH
Excursion: Petri Nets Petri Net ics of Activity Diag
+ Amathematical modelling language of bipartite graphs place « Active node in activity diagrams are recognized via implicit tokens
~ Semantics inherited from Petri-nets

transition

To describe discrete event dynamic systems

(e.g., in Business Process Modeling, Simulation, Data Analysis) /2
1
* Apelr nel PN is defined as PN = (N, M, W) with 6 i
anet... N = (PTF) over - multiplicity
~ finite disjoint sets of places P and transitions T markings

~ setofarcs F < (PxT)cup (P xT)
~ aplace multiset M: P — Z
— an arc multiset W: F —2Z

a5 Software Engiearing | RWTH Aachen S RWTH

« Firing a transition removes a token from the input nodes and adds a token to the output nodes
— Petri net transitions can fire if all input nodes contain a token

“"’Ve\"/"de |—{ DeliverBook |

—{ BuyBook —>[BuyBook

Sendinvoice b—>

DeliverBook —>

> active nodes

Sendinvoice

AD

Petri-net

a5 Softvare Engnonrng | RWTH Aachen S
o

Control Flows vs. Object Flows

+ Used to show sequences of actions

« Control relates to a control token —){ MyAct
— Actions cannot start until it receiving a control token on all input control flows S

~ Upon completion, actions place control tokens on all outgoing control flows

« Can be depicted by a dashed arrow, to distinguish it from object flows
* Can be used with:

~ Forks and join nodes (parallel execution of control)

~ Decision and merge nodes (selective execution of control)

«+ Object flows only communicate data

Decomposing an Activity Diagram with Call Behavior Actions

a1 Software Enginearng | RWTH Aschen S RWTH

act Operate Camera object f,ﬂw invoke/call another
& diagram .
=== o o = B
Pins match act Generate Video Outputs (Routing Flows]

Parameters in number
and type
+ Rake symbol denotes 0
details are depicted ‘ ot s
on another diagram

video in
RS, WPEG cup e ‘
processed rEoon aream)

[EEE——

p— e
s B el
i Conposte

s Software Enginearng | RWTH Aschen,

83

26.12.2023

Most Important Types of Nodes

Fork and Join Nodes

Initial Node ~ @——> —® Final Node

Fork Node *)'_) :I—' Join Node

[okl
Decision Node

}—* Merge Node

[fok]

« Fork nodes have one input flow, multiple output flows
~ Output flows are independent and concurrent

«+ Join node have multiple input flows, one output flow
~ Output occurs, only when all input flows are arrived at the node (default)

o

« Join specifications may override default join behavior of join nodes

B

foinspec=(f1 8& f2) ||

(1 &&f3)}

20 Softwars Engincaring | RATH Aschen S

so0 Software Engincaring | RWTH Ascher, S

Decision and Merge Nodes

Partitions (aka Swimlanes)

« Decision nodes have one input flow, multiple output paths [ok]
~ Guards must be mutually exclusive (non-overlapping)

~ Only one output path can be used, based on guard conditions o

« Merge nodes have multiple input flows, one output flow 3{_‘
~ Output flow is triggered upon arrival of a token on any of the input flows

> Intruder Intel

« Allocates actions to an entity responsible for
performing the action

=)

« Can be used to specify functional requirements of an
actor, component, or part

Advanced Operator

Move

« Can be depicted horizontally or vertically

event

_ Divudortnee

[1muder s moves)

sopsice |

oy command

Surveilance System

=,/ action

~roan)
it Camera
Issue Camera Commands -
Pan Gamera >

send signal

{swoam)

pan commands

sor Software Enginearing | RATH Aschen S

502 Softvars Engnoerng | RWTH Aschen S

Activity Model (with Branching Object Flows)

Decomposition of Calculate Fee

act Pay Parking Bill (Control Flow)

control flow

Approach V/ Prompt Driver to Insert

i DaeTine
object flow—_
~
— iy Do
(o e Gy Tt T
v e
this control T et cod DN
e o
flow preserves — multiple object
wambiguity. | N Flows might
introduce
ity

Feo
(Open Gate Depart Gate]——{ Close Gale 1 ambigul

« Example below shows use of Input and Output Parameters for the Calculate Fee Activity
« Hierarchical relationship of activities and actions

‘act Calculate Foo

I Timeparied
£ :ltry
Time/Date Calculate Time Parked]]—A:{ Calculate Fee Amount]_>[
g TimeParked g

03 Software Enginearng | RWTH Aschen, S

84

26.12.2023

Summary

Activity diagrams model behavior that specifies the transformation of inputs to outputs through a controlled
sequence of actions

~ inputs/outputs can either be streaming or non-streaming

Parameters: Multiple inputs or outputs of activities and contain multiple actions

’ ‘ Model-Based Software Engineering
~ Actions consume input tokens and produce output tokens via pins
12. SysML v2 as Systems Modelling Language
« Object Flows are used to depict the flow of object tokens from one action to other actions 12.4 Constraints and Requirements

Control Flows are used to depict the transfer of control from one action to other actions using control tokens Prof. Dr. Bernhard Rumpe

Software Engineering
RWTH Aachen

Partitions are used to assign responsibility for actions to blocks or parts that the partition represent

http://www.se-rwth.de/

508 Software Engincaring | RATH Aschen S RWTH S

RWTH

Constraints Examples from Industry
.)) <<part def>> enclosin
« Constraints are reusable, parametrized Boolean expressions constraint def MassConstraint { Al10rNothingRegulator™~~___ part def
in partMasses : MassValue[@..*];
in massLimit : MassValue;
+ Used to express specifications (equations) . <<part>> <<part>>
_ Reference thelr inputs sum(partMasses) <= massLimit ControlPanel siSubtractor
~ They can model abstract (not computable) analytical constraints, part. def Vehicle { torget Temperatra]) assert constraints Lo Tomerurs
o 4 S arger
value derivations, boundaries, etc. | assert constraint m : MassConstraint { 5 o arget-sensed}
in partMasses = (‘sensed: Temperature
. . . asserted chassisMass, engine.mass, ‘7 binding connector:
+ Constraints can be used in a context, typically a part constraint transmission.mass perties at both ends
~ Their inputs can be bound usage) binding of have the same values
in masstimit = 2500[kg]; values <<part>>
— They can be asserted) 2 e:Evaluator
. . attribute chassisMass : MassValue; assert constraints
- Asserted constraints cannot be violated part engine : Engine i Temperature { ii §<9 then heat;ng heating: ActuatorSignal
s . - >0 then heating:
— Otherwise the model is inconsistent H i
if ‘then heating: ‘cooling: ActuatorSignal
}
sor Softere Engioaring | RWTHAachen S RWTH 00 Sotvare Engiosarng | RWTH Aschen S RWTH
= o
Examples from Industry Requirements
<<part>> . .
Straight-Line Vehicle Dynamics « Constraint Definitions requirement def VehicleMassLimit {
— define equations that can be re-used and inter-connected subject vehicle: Vehicle;
reference to ~ define a set of parameters assume constraint {
- e . " oc
an attribute define an that the vehicle.fuelMass == vehicle.maxFuelMass
&= pedal Fo.foe 0 esert comstraints + Requirements are special Constraints require massConstraint; reference to
(5 e o e ton} < Acceleraton ~ They group multiple constraints (or requirements, i., allow nesting) | } ~—_ constraint
T duty: Percentage - ~ They can have assumptions in the form of constraints
= {J — They have a subject and can reference its attributes . ter: venicle {
— They can be satisfied by providing an actual subject part commiters venlcle
(sim)i/lar & comatrains bii:g asse?led)) , attribute :>> chassisMass = 1500[kgl;
f(p;"tT> « non-satisfaction renders model inconsistent
viVelocity « Distance satisfy ri: VehicleMassLimit by commuter;
| v: Velocity assert constraints - L
assert constraints (L, v = dw/dt)
0 {a = dv/dt}
| <<attributess |
K Time i
[
sonem o

85

13. Summary

« Parametric diagrams
~ capture the analysis as a network of equations
~ help ensure consistency between the system design model
~ help to manage technical performance measures

* Constraint Blocks
~ define parameters and constraint expressions
~ represented on a Block Definition Diagram

« Constraint Property
~ usage of constraint blocks
~ represented on a Parametric Diagram

and multiple engineering analysis models

s Softare Engineering | RWTH Aschon

MBSE

13. Interactions with Sequence Diagrams
13.1. Concepts, Syntax

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

26.12.2023

‘method1(...)
methody(...

Sequence Diagrams (SD)

Example: Sequence Diagram

* Uses of SDs
~ modeling of exemplary observations
~ representation of interaction patterns of objects
~ chronological order of calls
~ trigger for tests

« Comparison of SD and statechart:
both are behavioral descriptions

sequence diagrams statecharts

« Core features of SD
~ exemplary nature
— focus on interaction between objects
~ uses a timeline

interaction of several objects | behavior of one object
complete
state based

exemplary
no internal state

copper912: bidPol:
Au BiddingPolicy

TimingPolicy

513 Software Engiearing | RWTH Aachen

analyze
validateBid(bid)
return BiddingPolicy.OK|
newCurrentClosing
return t
ttimeSec
+ extensionTime
st Sofvars Engosrrg | RWTH Aschan RWTH

Example: Sequence Diagram

Terms for Sequence Diagrams

method call
‘\ __—objects
s
copper91. bidPol: timePol:
BiddingPolicy TimingPolicy

+ Object: used as in the object diagram, only with the
object name and type (no attribute values)

« Timeline describes the time elapsed of the object
from top to down
- no true scaling, but temporal order

« Interaction takes place between two objects
~ trigger is a stimulus (as discussed in statecharts)
— parameters of interactions can be omitted

« Activity bar show the activity duration of a method call
— activity bars can be represented nested in object
recursion

« Logic condition describes a property at a certain point
of time

copper91
icti

validateBid(bid)

return BiddingPolicy.OK|

CurrentClosi

bidPol: timePol:
BiddingPolicy TimingPolicy

12, bid)

return t

ttimeSec == bid.time.timeSec
+ extensionTime

validateBid(bid) timeline
retum BiddingPolicy.OK
return ewCurrentCI 12, bid) activity bar
— return t
]
OCL constraint describes property at
that timepoint
o St Engnoarng | RWTHAachon

SE.- ™M

516 Softvars Engnoerng | RWTH Aschen

86

26.12.2023

Forms of Interaction Object Creation via Constructor

A1&A2) | methodname(arguments) | /_\\

« If an object doesn't exist yet at the at the beginning of
B) return result the observation, but it will only be provided during copper91
Auction
new BidMessage(.

« arrow types describe several forms of interaction

for software

A1) method call and return

A2) asynchronous message/signal transfer + For C++ processes a similar construct exists for the
(not distinguished from method call) destruction of an object.

B) result of a previous method call (return) - Target language Java does not require this.
C) exception (as abnormal termination)

creation then it is placed at the creation point.

for systems: D)
D) flow of physical items

flow of energy (i.e. power, heat, etc.)
... and of course also data and messages

Car(No. AC-K-553;

Electrical Power

object is created here

The “objects” are the very same as in the object
diagrams and SysML's IBDs, possibly tagged with
their kinds

s Softare Enginaring | RITH Aschen S RWTH st Sofvars Engraerng | RWTH Aschan S RWTH
Object Creation with Factory Stereotypes
o) £: Factory * SD also has its own predefined stereotypes
« Example, how an object is created via a factory: + Example:
" ~ «frigger» marks the call, that triggers the interaction of the sequence diagram
gethowBidMessoge(-) new ~ used for e.g., modeling of tests:
BidMessage(..)| b
BidMessage
return bm
‘ ‘AuctionTest ‘ copper912; | ‘ ‘
Auction
[«
+ However: abstract representation (i.e. omission of oaa:
intermediate actions/objects) is useful «trigger»
~ Here: omission of the factory in the model starts
(although it will be needed in the code) geiNewBidMessage(..) - the test return BiddingPolicy.OK.
+ The semantics of the SD has to permit this BidVessage
510 Softere Engioaring | RWTHAachen S RWTH 520 Sofvars Engosrrg | RWTH Aschan S RWTH
= froey
OCL Constraints in the Sequence Diagram OCL Constraints in the Sequence Diagram

« OCL condition characterizes a property, that holds at a specific point (i.e. in the middle of the execution

+ OCL constraint must hold exactly during a specific

point in the execution method(...)

copper91 bidPol: timePol: condition
Auction BiddingPolicy TimingPolicy * Variable names that can be used in OCL constraints:

~ all object names

. corditiondpplies

validateBid(bid) ~ attributes of the objects, whose timelines are touched immediately after
~ arguments of previous method calls the interaction
newCurrentClosing 12, bid)
. § . . copper912:
retumt * Auxiliary Variables in Sequence Diagrams can be Auction
<: timeSec == bid.time.timeSec \ &~ introduced with the let construct /\
+extensionTime OCL constraints ~ in analogy to the let variables in pre-/postconditions for (letint m = theo.message.size)
sendMessage(bm) B reuse in later OCL conditions
/ introduction of sendMessage(bm)
[[auxiliary variable

copper912.currentClosingTime==t && theo.message last==bm > <

T T T theo.message.size ==m +1)

st Software Enginearng | RWTH Aschen S RWTH 22 Softvars Engnoerng | RWTH Aschen S RWTH

=

87

« Booking a ticket at the counter

exercise
+ Money withdrawal
+ Money transfer

« Direct phone call

+ Phone call via operator

* Was one SD sufficient?

s Softare Engineering | RWTH Aschon S RWTH

26.12.2023

MBSE

13. Interactions with Sequence Diagrams
13.2. Semantics

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

S o

Exemplary Nature and Incompleteness of SDs

Precise Meaning of a SD

« Asequence diagram describes a period in a process
of the system:
~ the object set is incomplete

~ arguments of method calls may be missing copper912.
~ further interactions take place before and after the shown Auction

ones
- more interactions could even happen in between
validateBid(bid)

~ the same sequence can occur multiple times
- it may even occur temporally overlapping
« it may also not at all occur

return BiddingPolicy.OK

~ What is the semantics of a sequence diagram?

— What does a sequence diagram tell us?

« is based on a mathematical mapping of
~ prototypical objects in the SD to real objects of the system
— i of the SD to real i in the system
~ (for precise definition see: B. Rumpe: Modeling with UML)

the real objects of the systems

copper912: .
Auction !
retum BiddingPolicy. OK l"""e
illustration of the sequence
diagram in the system process

25 Software Erginearng | RWTH Aschen, S RWTH

pee

526 Softvars Engnoerng | RWTH Aschen S
o

Complete Representation of Interaction

Nearly-Complete Interaction Shown

« To model that all object interactions that are taking place during the period of observation are shown
tag «match:complete» (short: ©) is used
« «match:complete» prohibits all other interactions in between

copper912:
Auction

return BiddingPolicy.OK

« Allinteractions with other visible objects that are taking place during the period of observation are shown when
tag «match:visible» is used
« «match:visible» prohibits that other interactions in between with visible objects:

-

retumn BiddingPoli 0K-]|]\ % o

27 Software Enginearng | RWTH Aschen S RWTH

-

52 Softvars Engnoerng | RWTH Aschen S
e

88

26.12.2023

Interaction Shown Incompletely

Non-causal SD

« Any other interactions are possible

«+ Tag «match:free» (short: ...) permits all other interactions in between

copper912:
Auction

* Non-causal SD is a SD, in which the effect chain
(causality) is not clear
- Examples 1 and 2: why did method2(....) occur?

« These are non-causal but possible observations
~ InSD 1, e.g.. due to a not represented interaction from a to ¢
(from b to ¢ or an unknown object to a and c)

+ In concurrent systems a temporal order may have
causal reasons, but may also be based on pure
coincidence.

s | [e]

=]

method(...)
method2(..)

validateBid(bid)
+ Causal SD can relatively well be used for constructive
5 code generation method? (..
return BiddingPolicy. OK—| TR — Step 1: Merge all SD into a kind of “regular expression” over)
interactions
~ Step 2: Transform this into state machines for each
participating objects/component individually
s Softare Enginaring | RITH Aschen S __ | RWH s0 Sofvars Engrerng | RWTH Aschen S ; RWTH
Object Recursion in SD Object Recursion i d Underspecifi
« In OOP Method calls have a corresponding return « SD 1 is a correct as a description of an observation b
interaction > method(...) method1(...)
~ these interactions may be nested hod2(
S rotw + However, the observation is incomplete (some details uc
* Method recursion: the same method is called again - reum are not shown) method3(...)

with other arguments

Object recursion: the same object is called again
~ Which may be the same method (or another)

Object recursion is very common in OOP, many
design patterns use this

(b) indirect object recursion

~ e.g. it is underspecified in what causes e.g. method3(...)

Possible clarifications are SD 2 and SD3

[

method3y(...

st Software Engiearing | RWTH Aachen

S

=

502 Softvars Engnoerng | RWTH Aschen

SE ..

MBSE

13. Interactions with Sequence Diagrams
13.3. Methodical Use

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

=

Methodical Use of SD

« A: ASD can describe an observation:
~ A1: generated from an execution protocol for “debugging”
(those are usually lengthy and detailed)

~ A2: manually developed during the analysis activity
(used to specify desired interactions. e.g. in tests)

« B: ASD can be a constructive description of a
necessary execution order:
~ e.g. if it is the only possible, unique execution order with
no alternatives (unfortunately, this is rare)
« C: ASD can be a test driver:
~ «frigger» interactions are driving the test,
— the other interactions are modelled as observations.

+more

copper91
Auction

validateBid(bid)

return BiddingPolicy.OK

s Softvars Engnoerng | RWTH Aschen

S et

89

26.12.2023

SD and Statecharts Collaboration Diagram vs. Sequence Diagram
. . . K copper912:

Possible methodical uses of SD with Statecharts: TimeControl Auction « Collaboration diagrams describe the same information as SDs
A: 1. SD as exemplary description from which — but another form of presentation

2. Statecharts are synthesized, or start() ~ instead of a timeline, message/interaction ordering is indicated through numbers (1, 1.1, 1.2, 2,

- collaboration diagrams are rarely used today

B: given Statecharts are analyzed by finish() Collaboration

review of specific system runs (SD) 11: validateBid(bid) diagram

— simulations of a Statechart produce SDs numbering defines

. ; order of 11
(— close to process analysis) occurrence; ' getAuctionStatus
C:1.8D and y AuctionOpen sub numbering like 12 getBestBid

as two viewpoints of the system and in book chapters

2. checked for consistency through W Auction- \ copper912:
2a. appropriate matching techniques RogOpen X Auction

(call sequences, etc.) or }2: newCurrentClosingTime(copper912, bid)

2b. through code ion from 3

n finishQ Auction-
test case generation from SD @‘_W Extended

« Further reading: Ingolf Kriiger, LSC of D. Harel, et al.

| 3: writeToProtocol(
“Auction 912, Bid ... accepted")

s Softare Enginaring | RITH Aschen S | RWH 56 Sofvars Engraerng | RWTH Aschan S ‘ RWTH
Variants / Extensions for SD S ry for Seq| Diag
« History of SD: + ASD consists in its basic form of:
~ Sequence diagrams were a variant from message ~ Objects (with name and type)
sequence charts (MSC) that are used in the ~ Timeline for objects copper912; bidPol: timePol:
telecommunications field in combination with SDL. copper912 ~ Interaction pattern BiddingPolic: TimingPolicy
Auction ~ Activity bars
« Extensions for MSC's ~ Conditions validateBid(bid)
— concatenation, alternatives, repetition, parallel operations, .
recursion validateBid(bid) « A SD describes an exemplaric behavior return BiddingPolicy.OK|
~ with these SDs are more — extensions like «match:complete» allow to give SD more
since e.g., the altemative processes and iteration can be return BiddingPolicy. OK. rigorous semantics newCurrentClosi 12, bid)
described
— comparable to formal languages: « 8D can be checked with t for et
= single string imple SD s s
. i = i . LtimeSec == bid.time.timeSec
:2::;;3@&55'0" extended SD (without « SD can be used for test case definition + extensionTime
« context-free language = extended SD (with recursion) N
— further extensions in Harel’s Life Sequence Charts * SD can be used for cutting out code
s Softere Engioaring | RWTHAachen S RWTH s Sotvers Engooorng | RWTH Azchan S RWTH
= =
Systems Engineering Concepts we Already Know Rep. |
T"e"’y enables
contalns
\ Development
Model language is sound melhod
- foundallon
conforms to hierarchically
M BSE consists of
used for

14. Software and System Development Methods

executed by
14.1. Model-Based Development Methods produced by \
uses A\
Prof. Dr. Bernhard Rumpe [oveloper] [‘

Software Engineering
RWTH Aachen

S RWTH si0 Softvars Engnoerng | RWTH Aschen S
= .

« In this chapter we introduced: model, development method, and their underlying theory.

+ The concept model illustrates some relevant concepts and their relationships. ‘
http://www.se-rwth.de/

90

MBSE

14. Software and System Development Methods
14.1. Development Methods

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

SE- ™M

26.12.2023

Systems Engineering is an Ir isciplinary Appi for the ization of Sy Rep. |

Definition (INCOSE 2016):

US Department of Transportation

- Systems i ing (SE) is an ir isciplinary
c E approach and means to enable the realization of
successful systems.

It focuses on
« holistically and concurrently T e e
understanding stakeholder needs; ==

exploring opportunities;

INCOSE
« documenting requirements; and q
« synthesizing, & S acie @) N\ 1
« verifying, (S # Y /
- validating, and =

evolving solutions
A method decomposes the big problem

while considering the complete problem, from system . Fyrsid
o piete p 4 into smaller, manageable activities

concept exploration through system disposal.

RWTH

sz Softvars Enginserng | RWTH Aschen S

Systems development life cycle

« Asystems development process is the process of
dividing system development work into smaller
activities to improve design, product management,
and project management.

US Department of Transportation
B

« Itis also known as a systems development life cycle
(SDLC).

Typical distinct activities + and additional activities

~planning, ~ architectural exploration,
~ requirer gathering, - verificati « “Process” vs. “method” vs. “development model”
— analysis, ~ validation — Some say: Process tells only what, method also how
~ design, ~ evolution, ~ Others say: Process is a concrete instance of the method
~ impl - ter (= development model) for a concrete project
- ftesting, ~ bug fixing, ~ Sometimes: synonymous use.
~ deployment.
s Softere Engioaring | RWTHAachen

SE . ™M

The Waterfall Model

design
specification

Change requests

W. Royce (1970)

s Softvars Engnoerng | RWTH Aschen S

Most Important Development Activities

+ Requirements analysis .
~ Requirements, problems, objectives, and resources are
identified. Stakeholders are involved.
~ Clarifies: “What to do?”
~ Subsumes: requirements elicitation, business analysis, .
system analysis

* Architecture
— Defines the overall structure, i.e. the big picture.
— Explores alternatives.

+ Design .
~ Defines a fine-grained specification of system elements.

— Clarifies: “How to do it?’

Implementation (also: Construction)
~ Coding, 3D-printing, any other form of construction and
production.

Testing

— Any form of analyses, experiments, executions or
reviewing of development artefacts, subsystems or the
system that ensures desired quality.

~ Subsumes: Validation against stakeholder requirements
and verification against design artefacts.

Maintenance

~ Keeps a product in good condition by adapting it to
changed needs, checking it, and repairing it when
necessary.

~ Subsumes: Evolution (in the small), bug fixing

545 Software Enginoaring | RWTH Aachen

=

Concept Model for Development Methods and Projects

/ has
|

hierarchically assumes Devel
i per Phase
done Role T
consists of " /
executes Iteration

o

subactivity,
C/ isOfKind \ has
e s
reates 7A upates

3

Artefact-Type

isOfKind

5 subtasks
creates. updates

Artefact

Method definition ' Project (method application)

56 Softvars Engnoerng | RWTH Aschen S
e

91

26.12.2023

Quality Assurance in the V-Model

Evolutionary Development

« Rather useful for smaller projects or experimental systems

Analysis Test cases A test
« But is increasingly used for larger projects
« Predecessor of methods Extreme Programming and Scrum
Test cases System test
Requirements
. — Prototypes,
Design Test cases test Incremental versions
[implementation | [Unitiest | Design | | I
Implementation
Boehm 1979 (nitisl, old V-Model)
a7 Softers Engnserng | RWTH Azchen S RWTH sia Sofvars Engraerng | RWTH Aschan S RWTH
The Rational Unified Process (RUP) decouples Activities and Phases RUP supports labor distribution
time
[of Tr iti

Analysis Analysis

Design Design

Implementation

Test Test

Configuration Configuration

management

Project Project

management

activity activity

val Unified Process 1999 (Jacabson et al, Kruchten) Rational Unified Process 1999 (Jacobson et al.
4o Sotwars Engneadng | RWTH Azchen RWTH 550 Sotvare Engiosarng | RWTH Aschen RWTH
SE = SE .
RUP: Workflow for Archi al Design Scrum, XP: Highly ive D P
Feature
e Continuous Visibility
n Test
Sreond R‘Sk‘ st |n(:;::h&°n and Participation

[©) l

Identify Design

7 Elements

Architect

L Review the

Design
Identify Design Guidelines Architecture

Mechanisms

@]

Design
i Incorporate
Existing Design
Elements Architecture.

Reviewer

Workflow Details:
Roles, Activities
and their Artefacts

in the Architectural
Design Workflow

st ‘ Software Enginearng | RWTH Aschen S

Initiate Project

AGILE

Define
Requirements

A2 A

Lead User

Approve | YES P> Release

Stakeholder

sz Softvars Engnoerng | RWTH Aschen

o

92

26.12.2023

Development Methods The Methodological Pyramid

A systems development process organizes its

activities in phases and iterations. / as \

« Phase _ + They are composed of an appropriate set of
~ Structure for larger projects development tasks and activities, such as “elicit

" requirements”, “review the architecture”
Iteration executes
~ Aconcrete project may have variably many iterations N .
has « To accorr:phsh the_se tasks a Iarg§ set of nr_ucrc
methods”, e.g. using a best practice, a design

+ Process models, such as RUP, V-Model, define the
overall development process .

=

process
models

development tasks
and activities,
process patterns

Waterfall: identifies phases = activities, no iterations

pattern, tools fz_)r analysis, generati_on or synthesis, micro-methodology, analysis,
+ RUP: has 4 phases, with many iterations in-between \D tools for evolution and transformations, etc. transformation, generation
~ Separates phase from activity (such as “design” act.) reads
creates 7A / subtasks « All these tasks are finally executed on the set of -
+ (Todays) V-Model: several iterations, with phases in- updates artifacts, that contains all relevant development artifacts: models,
between information, such as requirements, all kinds of diagrams, code

models, tests, code.

XP: only iterations, no explicit phases

o

5 Software Engincaring | RATH Aschen S RWTH ss4 Softvars Engioserg | RWTH Asshen S

Summary as a Concept Model

4 has A
System | ——— | Context

realizes

:
|
[] e,
.
A | [e—
.
:
\\

\ | uese
activity

14. Software and System Development Methods
14.2. Variants of Methods

T [[

‘ Design ‘ ‘ st | D

Architecture ‘ [Reaiiza) [safery- | | iction- ‘ Prof. Dr. Bernhard Rumpe
) | | assessment planning Software Engineering

‘ RWTH Aachen

+ Systems and their functions are described by models, which are part of various
development activities

http://www.se-rwth.de/

555 Software Erginearng | RWTH Aschen, S RWTH
— S e

Please recapitulate earlier chapter on Systems Engineering V-Model: A Standard Process to Develop Software
« Traditional Systems Engineering is Do Based -« Of ities of Model-Based Systems Engineering + The V-Model has
~ consistent, related models ensure integrity and enable ~ aconstructive left wing:
traceability « from requirements to coding P
P ~ Enables top-down design decisions and drivers ‘Gathering

~ Automated change propagation, ambiguity checking
tracing of i i to

. - ~ and a quality assurance and testing right wing:
N (changing) implementations = From unit tests to acceptance tests

* Model-Driven:

— Models even drive and guide the process ~ Each activity on the left corresponds to tests on the right

+ Model-Based Systems Engineering is the formalized — Models are primary development artifacts

application of modeling to support system

requirements, design, analysis, verification and ~ The V-Model assumes manual work in all activities,

validation activities beginning in the conceptual @E itis agnostic to models and automation

design phase and continuing throughout development ~ In practice: more than 2/3 of the work happen on the right

and later life cycle phases. side

— INCOSE SE Vision 2020

557 Software Enginearng | RWTH Aschen S RWTH 550 Softvars Engnoerng | RWTH Aschen S

==

froey

93

26.12.2023

c Informal /& V-Model with Functional Decomposition (system .

oy delivery

System S| fication

o System
wml ok n”y, T Validation verification
win 8 . Wity
LN
R

b

Architecture
design

architecture
verification
S & C,®C,8C;
from M. Broy.
Systems Design

ss0 Software Engincaring | RATH Aschen S RWTH

Agile Development in Engineering, Materials and Business

Materials
Development "”m‘k’:"‘/ﬂ:ﬂh‘/ Production
Cycle S - dos oo ol Cycle
P < L A
wianl 2\

Engineering

i update __ | "ty ""’».;Z% %" Technology

~

From our RWTH Internet of Producion Excellence chster (I0P)

s0 Softvars Enginserng | RWTH Aschen S
i

V-Model and MBSE

« Model based Systems Engineering 2.0

MBSE 2.0

PRODUCT

CONCEPT

From David Long, Vitech, 2019

sot Software Erginearng | RWTH Aschen, S RWTH

ISO 26262-1, Road vehicles — Functional safety

« IS0 26262-1 standard for vehicles

« Goal: quality of products

+ Mechanism:
~ Enforces dedicated development and operation
activities,
~ Organized in a development process

« Tries to be abstract
~ Allowing individual arrangements for each activity
~ Neither concrete tool, nor languages enforced

+ V-Model compliant (if not enforcing)

0 coteines 026262

sz Softvars Engnoerng | RWTH Aschen S

Model-Driven Architecture (MDA)

[y el e use cases and scenarios:
- sequence diagrams describe users’ viewpoint

application classes define data structures
state machines describe states and behavior

technical class diagram
adaptation, extension, technical design

+ behavior for technical classes

code generation
+ integration with manually written code

complete and running system

6 ‘ Software Enginoaring | RWTH Aachen

SE.-. ™M

Problems of Model Driven Architecture

« Not much reuse (libraries ...)

« Tool chain too deep
* No efficient tools

« Tracing problems

« Evolution is awkward

« Lot of information missing, e.g.,
~ design rationale
~ non-functional requirements

«+ “Agile” development is not possible

+ SE-Models are not integrated with other Engineering
Models (spatial, biological, ...)

54 ‘ Softvars Engnoerng | RWTH Aschen S

94

26.12.2023

e pre— erasen
. . . . = fksnciy
Agile UML-based Software Development: Constructive Use of Models for Coding and Testing Produkt Entstehungs Prozess (PEP)
class object i 1
geployment diagrams statecharts diagrams sequence pcavy 3
jagram diagrams T pe—— T
T z
ocL ‘_-{ T | p— ‘
P — H
\ Y J ’—'{ i goensisiron]‘—> 5 1
T N) T prnzpits osung H
] . H
I T— H H
parameterized v i
code] s, L
generator T e
H{ . ey H]
sebien s s
I |
“smells” & [¥ ‘ szl !
=] j
kel g awﬁ etal 2014
Konstruktionspiozsh
Koller/Kastrup: Construction Process _Sywpreat | Avaheeprosed jl V-Model variant: the BMW SMArDT Process
. . . . Vv
« Activities and intermediate results (“stations”) original o stonateaty gacies
R R —
« Six constructive activities R)
Each accompanied with analysis techniques for quality e Endergrin Layer 4 ﬂ?l\
e o relcton >
assurance
« Functions [r— /
= Effects leading to the functions Priten
« Carriers of these effects | powern
= Physical layout Auswihion anhand von & 4
" Surtace design pEsmn e [N
- Checks with prototypes S Techical onct et
Etrmenvon >
« It correctly decouples a project into manageable e i “ yis)
activities, but looks like waterfall e L T Hwesw aeaszation | oo [C——> (1™} | From oHe 1011, Drave, T. Greifenberg, 5.
o S, | Hilemacher, . Kriebel, E. Kusmenko, M.
B Korebatomstiton | Mrtmr,P. O K. 5. Saiman
o 1. Richarhagen, 8. Rumpe, C. Schule,
ke product | b g st s
o J ayiorsan fan 2076
567 Software Engineeing | RWTH Aachen e - RWTH 568 ‘Software Engineering | RWTH Aachen S RWTH
ogmos
SMArDT Process Layers Many Viewpoints
Layer A Layer B ayer C Layer D
Requirements. Logical Concept Technical Concept HW + SW) ;
+ Many Viewpoints for many stakeholders
System * And many different modelling languages
assisting these viewpoints
« This is why it is essential to ensure
interoperability and consistency between HETEROGENEOUS
models in a heterogeneous situation. DOMAIN-SPECIFIC
Subsystem (MODELING)
+ Problem: LANGUAGES
~ Tool manufacturers are not easily capable to
achieve this
~ Manual transfer work is often needed
Components X
|)3 ~ Consistency when evolving parts of the
models?

Softvars Engnoerng | RWTH Aschen

SE..

95

MBSE

RWTH Aachen

14. Software and System Development Methods
14.3. Models for Systems Engineering: An Overview of UML and SysML

Prof. Dr. Bernhard Rumpe
Software Engineering

http://www.se-rwth.de/

SE=.|™M

26.12.2023

The Unified Modeling Language: Object-Oriented Modeling for Software-Intensive Systems

Features of the UML

+ Elements for specification, communication

and documentation
- among developers
— developers with users

suries Goals of the UML

« Description of essential properties of a program

(like a blueprint)

~ union of several previously existing methods

+ Set of modeling concepts

+ Standardized since September 1997 by OMG
Ja

+ Developed by Booch,

and concrete notations

bson, Selic, -

Kobryn, Cook and many others... -

Structuring of problem and solution
Abstraction of implementation details

Definition of various views:

task assignment and workflows
software and system architecture
interaction between components
behavior of components
implementation

~ physical distribution

sz Softvars Enginserng | RWTH Aschen

S e

Overview of UML Diagram Types to Start

Overview of Diagram Types — 2

Diagram type

The central question answered by this
kind of diagram

Strengths

class diagram

ILT

Which classes form my system and how are
they interrelated?

Describes the static structure of the system.
Contains all relevant structural connections and
data types.

Bridge to dynamic diagrams.

package diagram

How can I partition my program in order to
retain an overview?

Logical group of model elements.
Modeling dependencies/inclusion is possible.

object diagram

What is the interal structure of my system
at a specific moment at runtime.
(snapshot)?

Displays objects and attribute values at a
specific moment.

Used as example for illustration.

Level of details is the same as in the class
diagram.

73 ‘ Software Erginearng | RWTH Aschen,

SE-.|™M

Diagram type

The central question answered by this
kind of diagram

Strengths

composite structure diagram

Whatis the inner structure of a class, a
component, a part of the system?

Perfectly suited for top-down-modeling of the
system (part-whole-relationship).

component diagram
L3
[9

How are my classes aggregated in
reusable, manageable components and in
which ways are these components related
to each other?

Shows the organization and dependencies of
specific components of the system.

deployment diagram

What is the operational environment
(Hardware, Server, Databases, ...) of the
system? How are the components
distributed at runtime?

Displays the runtime environment of the
system with the ‘tangible’ system components.
Presentation of ‘Software Server’ is possible.
High level of abstraction, only few notational
elements.

s ‘ Softvars Engnoerng | RWTH Aschen

SE =

Overview of Diagram Types — 3

Overview of Diagram Types — 4

Diagram type

The central question answered by this
kind of diagram

Strengths

use case diagram

What does my system provide to its
environment?
(neighbor systems, stakeholders)?

External perspective of the system.
Suitable for context identification.
Strong abstraction, simple notation.

activity diagram

How does a flow-oriented process or
algorithm execute?

Very detailed visualization of processes with
conditions, loops, branching.

Parallelism and synchronization.
Representation of data flow.

state machine diagram

=T

Which states can an object, an interface, a
use case , etc accept and by which events
are these states triggered?

Precise mapping of a state model with states,
events, concurrency, conditions.

Enter and exit actions.

Nesting possible.

sequence diagram

Who which il ion with
whom and in which order?

of
between communication partners. Accurate
representation of the temporal order, including
concurrency.

575 ‘ Software Enginearng | RWTH Aschen

SE ™M

Whois cooperating in the system?

Diagram type The central question answered by this Strengths
kind of diagram
diagram Wh Il with whom? Represents the exchange of information

between communication partners.
The focus is to give an overview.
(Details and timing less important).

timing diagram

=t

When are interaction partners in which
state?

Visualizes the exact timing behavior of classes,
interfaces, protocols, ...

Suitable for detailed observations, where it is
important that an event occurs at the right
time.

Interaction overview diagram

How do interaction fit together?

Combines interaction diagrams (sequence,
communication and timing diagrams) to a
top-level.

High level of abstraction.

576 ‘ Softvars Engnoerng | RWTH Aschen

SE =

96

26.12.2023

Systems Modeling Language SysML

Model-Driven Development

+ SysML is dedicated to model the software part of
(embedded) systems

* Models are the central notation
in the development process

. i i =
_It started as var_lant of UML, but will probably become - -
independent (with 2.0) s -
- " models |__—"
+ SysML reuses 7 of UML's 14 diagrams, and adds 2 new e 2007: SysML 1.0 ﬂi Vark
diagrams 2008: SysML 1.1 / — i
O airement and parametc dagrams 2010, SyeML 12
2012: SysML 1.3 \
- w1 2015: SysML 1.4
o 2017: SysML 1.5 constructive: 3D-printing
:> code generation, synthesis
2019: SysML 1.6
“ 4 :> « Models can serve as central notation for systems development
2023: SysML 2.0 « Agood modeling language can be used for analysis and synthesis
s Sofre Engineting | RWTH Aschen RWTH s Sotvae Enginserng | RWTH Aschen RWTH
| SE--. | SE-:-.
Summary Literature on UML

* Overview of methods
~ XP, Scrum, V-Model, RUP,

« Overview activities in a project
~ Analysis, design, implementation, testing + planning

« Agile, model-based systems development
~ Using SysML models

« Automation using tools
~ Generation
~ Consistency checking

579 Software Engiearing | RWTH Aachen

+ OMG UML 2 description (www.omg.org):
~ Notation Guide, Semantics, Metamodel, OCL, Summary

+ Martin Fowler, Kendall Scott: UML Distilled Agile
Modeling
with UML

« Desmond D'Souza, Allan Wills: Objects,
Components, and Frameworks with UML,
The Catalysis Approach

+ Mario Jeckle, Chris Rupp, Jiirgen Hahn,
Barbara Zengler, Stefan Queins:

UML 2.0 glasklar (German)
+ Martin Hitz, Gerti Kappel: UML @ Work

50 Softvars Engnoerng | RWTH Aschen S
o

e
MBSE

14. Software and System Development Methods
14.4. Scrum-based Agile Methods

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

Classical vs. Agile Processes

Waterfall Process (V-Model, RUP) Agile Process

« Activities are chronologically separated in phases « Activities organized in short sprints/intervals
| A
! Andnkis L1]
= 1
i3 g
e |
70% Progress | =
0% usable | p
_____________________ 13 !
ig h
i3 '
i 0
i h
Release H I I Releasé
40% Progress |
30% usable

Time / Progress

Agility and Evolution live from many small iterations

=

SE =

sz ‘ Softvars Engnoerng | RWTH Aschen

97

26.12.2023

Development Processes ... Scrum, XP

Feature
Tests &
Integration

Continuous Visibility
and Participation

42k & i

Developer Lead User Stakeholder

Scrum
« Artefacts: The Agile: Scrum Framework at a glance
— Product Backlog, 'ﬂa‘:‘:’s":&:ﬂ:s °
Sprint Backlog and Customers, Users m

Daily Scrum
Meeting

Burndown Chart.

Initiate Project « Sprint s °® o %.a
— Time-boxed phase to m“m
Define
Requirements AGILE e vesh Rotcase E’e"e"l’l" the r‘:)"’d““ The'Team sprintReview
usually shot
o Te
% >) B ’m
o « Sprint Backlog s muchask \ .
™ wﬁ" — List of User Stories (and e, Bs:::.: ?”'E!.’;“:{Er Finished Work
75:.,,, & bugs) to deliver Sprint i o o
Ao
Backlog eeting -
Retrospective
P Softers Engnserng | RWTH Azchen S RWTH soa Sofvars Engraerng | RWTH Aschan S RWTH
Scrum Burndown Chart Extreme Prog ing (XP)
Sprint Burndown Chart
-~ Ideal Burndown « Light-weight, agile software development method
700N\ e— Actual Bundown ~ Comprises values, principles and practices
&0 « Omits elements of software development:
s00) . ~ Documentation, partitioning into (longer) phases
e
3% « Primary focus on
200) ~ Source code, tests, communication
~ Short development iterations
200
100 + Needs: smaller teams, no life threats in product, available customer
R P P P o P P o P P P P P P P P P Consequence: XP cannot be used for every kind of project!
S e e e e e e e e S S e N e S T e e e
oays
Burndown Chart shows actual state and desired plan of work progress within a sprint
sas Sotwars Engneadng | RWTH Azchen S RWTH st0 Sotvare Engiosarng | RWTH Aschen S RWTH
i =
Fundamental Principles of XP XP development best practices
— Fast feedback — Simplicity Some of the most important:
— Continuous project management — Clarity, elegance
« Planning game « Simple design
— Incremental Changes + 40 week + Testing
~No blg-pang integration ~ Support .Changealb!l!ty « Continuously available customer « Refactoring
— Quantifiable progress — To achieve flexibility and
reduce costs of errors « Small releases « Pair programming
— High Qualitative Results « Continuous integration » Common code ownership
— Ensured by different measures: : X o
testing, pair programming « Rigorous coding guidelines
-> Observe: XP is a very rigorous process
sar Sotvars Engneadng | RWTH Azchen S RWTH st0 Sotvrs Engioearng | RWTH Aschen S RWTH
s =

98

26.12.2023

Testing in XP

* ... is most important in XP!

Parallel development of code and tests
— Best is “Test first"l

Only fully automated tests

— Setup of test

~ Execution

— Evaluation of result to “green” or “red”
~ And: avoid manual test and debugging

« e.g. using junit, cppunit, etc.
For all languages incl. Simulink available

Run the tests every commit & every night

« In systems engineering: Test with simulations.

1 Packege Explrer | Junt 52 -a
Frihed sfter 0 seconds

Ll R

Rust 22 SEvars: 0 BFaiwest 0

testSameBehavior (0,000)

Fiished after 0,016 seconds. -

S haE AR

Runs: 22 SEros: 0 OFalwes: 1

B tost SampleTestSute (Rurner: i 3] (0.00C

= i test sampeTest (0.0005)
] testSomeBshavior (0.000:)
£ estorException (0,000 5)

i
|
|
|

y: Various Develop Methods fit

Project Needs Rep.

sa0 Software Engincaring | RATH Aschen

[po]
/ has

1
hierarchically assuimes [Develoy

per
consists of/ done /

subactivity,

Corn
updates

creates

Artefact-Type

Method definition ' Proj

N

\ has

regls subtasks
creates updates

Artefact

ject (method application)

sa0 ‘ Softvars Enginserng | RWTH Aschen

S o

e
MBSE

15. Testing and Simulation
15.1. Model-Based Testing

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

What is Testing? Definitions:

« Testing is the process of executing a program with
the intent of finding errors. .
(Myers: The Art of Software Testing '79)

Software testing involves executing an
implementation of the software with test data and
examining the outputs of the software and its
operational behavior to check that it is performing as
required.

(Sommerville: Software Engineering ‘19)

The term test means the process of planning, the
preparation and the measurement, with the aim of
determining the characteristics of a system and to
demonstrate the difference between the current and
the required condition.

Atest is goal-oriented.

Atest of a modified system can show behavioral
equality with the original system exemplarily.

~ ie. Regression testing

+ An automated test performs
~ (1) the setup of the test data,
~ (2) the test and
~ (3) examination of the test result.

Success or failure of the test are detected and reported by
the test run (green light).

9 Software Enginoaring | RWTH Aachen

S RWTH sz Sotuare Engioeerng | RWTH Aschen S RWTH

= o
Testing Activities Test Levels
« Atest executes the system under test. « Acollection of tests form a software system on their

. own, which runs in conjunction with the system under Test type Who created the test | Test candidate i 9
+ Atest is exemplary. examination. I 4 (or executes it)? s .
. i acceptance test users, most the installed
Atest is repeatable and determined. + Tests should be automated. P! e e ly praduct

system test test team with the help | the instrumented
(“acceptance test”) | of users
in the test
environment
subsystem test
(“integration test”)

test team, developers | subsystem

test test team class
(“class test”,
“module test’,
“unit test”)

production system

Syetem System Test Design System
Design Testing
Integration
Arhitecture Test Design ntegration
Design Tosting
UnitTest
Module Design, @

Design

Implemen-
tation

function test, developers function, method
method test
e Softvars Engrerng | RWTH Aschan

99

26.12.2023

Basics |

Terminology: Error

Failure is the inability of a system or component to
provide a required functionality within the specified
limits.

Failure manifests through wrong output, incorrect
termination, or violation of time and storage
conditions.

+ Omission is the lack of required functionality.

« Surprise is code that does not support any required
functionality and is therefore useless.

Fault is a missing or incorrect code.

0 Ciick "Fix"tofixerror

« Error is an action taken by the user or an
environmental system that causes a failure.

Terminology: Test

Basics |

Test object = system under test (SUT), system to be
tested, test item, testee

Test procedure: method how to create and carry out
tests

Test point / test data: concrete set of values for the
input of a test, including object structure and objects
to be tested

Expected test result: the expected outcome of a test.

« Test case: description of the state of the test object to
be tested and the environment before the test, the
test point and the test result (includes test point +
expected result).

Test suite: set of test cases

Test run: execution of a test with actual results

Test driver organizes the test run from the setup of
the test data until the examination of the success of

the test.

Test success iff actual result and expected result are
compliant. Otherwise, the test has failed

Test verdict: statement on whether the test
succeeded or failed.

sos Sofre Engineting | RWTH Aschen S RWTH st6 Sofvars Engraerng | RWTH Aschan
Structure of a Software Test Structure of a Software Test
test point definition:
test point: objects and interfaces to the environment, test point: objects and Object diagram describes
links for the start state simulated with dummy objects links for the start state
¢ 5 Yoz the start state
o3 o4
1 — ul) database connection
test driver may be complex
invoked method test candidate @ nhical UL invoked method test candidate 5D drives the rest and
(sUT) (method(s)) = grap! (SUT) (method(s)) describes observations
g u3) neighboring subsystem
— 02
result of /(m j_ result of expected result and
P C o SUT OCL predicates are

executing SUT I CORCS executing used as test oracle
sor Sotwars Engneadng | RWTH Azchen S RWTH ss0 Sofvars Engosrrg | RWTH Aschan S RWTH
Structure of a CPF Test Dummies, Mocks
« Test driver etc. is also CPF « Critical

test service channels help to setup the CPF Under Test interfaces to the environment of the test candidate
X «data» «data» X X «data» «data»

« Atest provides a sequence of data, energy material CPF + These are simulated by dummies CPF

to the interface «energy» e «energy» a) to prevent side effects energy U s energy

«material» «material» b) to check correctness of access «rateriah materiah

« Energy and material and their components need to ¢) to audition prepared results simulation simulation

be simulated
Data can remain as is, but may be transport and some
processing components are simulated as well

l] tostsentces

Testing System:
Test Setup, Driver, Result Comparison

\B‘verdict

+ Output sequence is checked accordingly
~ test service channels are used to check internal state

Test result: typically also contains detailed results

CPF itself can be composed or an atomic function
— Various forms of subsystems can be tested

599 Software Enginearng | RWTH Aschen S
=

+ Dummies substitute real environment
database
~ neighboring systems: physical components
GuI

+ Mocks are dummies with some intelligence
(e.g., answering requests intelligently)

+ Mocks can be part of testing system, but also replace
part of the CPF Under Test.

«data» l I testsenvices «data»

Testing System: Dummy
Test Setup, Driver, Result Comparison & Mock

w‘vemml

o0 Softvars Engnoerng | RWTH Aschen

S o i

100

26.12.2023

Effects of A Tests and
« Test with failure of the SUT documents an error. + Knowledge about the system functionality is stored in
repeatable tests.
« If all tests are successful: -
« Developers’ confidence in their own and + C ive set of test cases and system
the results of colleagues is significantly higher. specmcatlon are two models of the system.
. If- i ofa per to adapt « Testing effort is reduced. Manual regression tests and N . .
someone else's models. simulations would be too costly in the long run. 15. Testing and Simulation

15.2. Object Diagrams to Model Test Data

Detailed test collection documents the quality of the
system for the customer.

Prof. Dr. Bernhard Rumpe

Software Engineering
RWTH Aachen

http://www.se-rwth.de/

Structure of a Software Test Example: Opening an auction - 1
« Test data definition: « Initial situation (simplified):
test point: objects and ~ OD describes the start state OD YetClosed
Jink P h J ~ test data is sometimes complex, but only small number of a1213:Auction timePol:ConstantTimingPolicy
inks for the start state them is needed. Highly reusable (if tuned to specific
needs) long auctionident =1213 | g, lint status = TimingPolicy.READY_TO_GO
String title = “fast drill* boolean isInExtension = false
+ Test driver may be /int numberOfBids = 0 int extensionTimeSecs = 180
— complex SD that drives the test and describes
invoked method observations (usually compact, short)
(sum) — or just program code to call the desired methods
« Test oracle
— OD describes the expected (changed) result possibly
result of - refined by OCL predicates
executing SUT ~ Result OD needs to models differences only (i.e. usually
also compact)
+ Reusability of diagrams allows effectivness
w0 Softere Engioaring | RWTHAachen S RWTH o0 Sofvars Engosrrg | RWTH Aschan S RWTH
e e
Example: Opening an auction - 2 Example: The Test
« Expected result: auction open « Description of a test
OD Running N .
" test object: Auction.start();
a1213:Auction timePol:ConstantTimingPolicy test data: OD YetClosed; /_,A
driver: a1213.starl(); - N
L@ int status = TimingPolicy RUNNING assert: OD Running;
boolean isinExtension = false [inv NoBidYet; inv Bidders1;

+ The generated code
0 1) testStart() {

" Austion a1213 = setupYelClosed() Il generate test data
a1213.start(); <

: :ﬁ"/ 1/ run the test
welcom start:StatusMessage 2 assert |sStrucmredAsRunmng(a121 / /I expected results met?
checkNoBidYel(at213);, - Il property NoBidYet
int newStatus = StatusMessage.START checkBidders1(a1213); Jl invariant Bidders1

* And it shall hold:

context Auction a inv NoBidYet:

{ min al213 | mi Bi }.isEmpty "+ The di and OCL are i as discussed
e e

101

General Test Case Structure

Atest with all its elements can look like this. Often tabular representations are used as well:

test NameOfTest {

name: AuctionTest.testBid
test data: object diagrams prepare the test data
tune: Java code allows fine tuning of the test data
driver: Java method call(s) or sequence diagram
OCL method ification checked for the method invocation

interaction: sequence diagram used for monitoring the execution
oracle: Java method call or Statechart produces expected results; these are compared to real results
comparator: Java-Code | OCL-Code compares actual and expected results

: +an path are checked
assert: object diagrams | OCL conditions | Java test code check actual result
cleanup: Java code cleans up used resources (e.g. data base)

ar Sofre Engineting | RWTH Aschen S RWTH

MBSE

15. Testing and Simulation
15.3. OCL Invariants and Method Specifications

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

26.12.2023

OCL Invariants are Used as Code Instrumentation

« Example: Java method, extended by invariants:

class Auction {
addMessage (Message m) {

message.add (m) ;

for (Iterator(Person)
ip = bidder.iterator();
ip.hasNext () ;) {
Person p = ip.next();
p.receiveMessage (m) ;

}

discuss

509 Software Erginearng | RWTH Aschen, S RWTH

OCL Invariants are Used as Code Instrumentation

« Example: Java method, extended by invariants:

class Auction {
addMessage (Message m)
ocl !this.message.contains (m);

let int oldMessageSize = message.size;
message.add (m) ;
ocl message.size == oldMessageSize +1;

0 for (Iterator(Person)
ip = bidder.iterator();
ip.hasNext () ;) {

Person p = ip.next();
p.receiveMessage (m) ;
}

ocl forall p in bidder: m in p.message;

610 Softvars Engnoerng | RWTH Aschen S

e

Code Instrumentation by Invariants

« ocl-keyword is similar to the assert keyword in Java
but followed by OCL conditions

class Auction {
addMessage (Message m) {
ocl !this.message.contains (m);

Implementation of OCL conditions as
~ assert (in normal code),
~ JUnit statement (tests), or

let int oldMessageSize = message.size; _ Simply omission in the production code

message.add (m) ;

ocl message.size == oldMessageSize +1; . L . A
« Code instrumentation is especially effective in

combination with lots of covering tests

for (Iterator(Person)
~ these extensively test the OCL invariants

ip = bidder.iterator();
ip.hasNext () ;) {
Person p = ip.next();
p.receiveMessage (m) ;
}

ocl forall p in bidder: m in p.message;

Invariants also give hints on where (more) tests
should be defined, e.g., for boundary values

o1 Software Enginearng | RWTH Aschen S RWTH

=

1s (Pre-/F

+ Method specification can be used for testing.
« Code instrumentation:

01] context MyClass.method () ocL) 21| class MyClass {
02|let type a = value; —— 22| method() {
04| post: condition2 — | {24/ > ocl conditionl;

{251——> // method body
[261—> ocl condition2;

03| pre: conditionl; — | . |23 let type a = value;

11] class MyClass { ST
12| method() { 28|}
13 // method body

14 1}

+ Problems with this approach
— code instrumentation may not be possible because source is not available
~ returns in the method body must be treated separately

o1 Softvars Engnoerng | RWTH Aschen S

e

102

26.12.2023

Methods Specifications (Pre-/Postcondition)

Test Cases Derived from Method Specification

Using subclassing: then instrumentation is not necessary

11] class MyClass {
12| method()

13 // method body (without return)
14| }}
+ Necessary:

~ subclass objects to be instantiated,
- use of a replaceable factory/builder (design pattern)
~ do not use static methods.

01] context MyClass.method() ocL) 21[subClass extends MyClass {
02|let type a = value; [[22| method() {

|Z31— type a = value;
|5 ocl conditionl;

super.method () 7
t—— ocl condition2;

}

28)

Basic idea:
~ analyze method specification to discover cases that
should be tested

« E.g. each clause of a disjunction of the precondition
should be tested as a separate case
— This identifies two cases

Additional case (3):
what happens when a precondition (i.e. the
disjunction) is not fulfilled at all?

« Example: changeCompany

context Person.changeCompany (String name)
pre: company.name == name ||
forall Company co: co.name != name

Case 1:
company.name == name

Case 2:

forall Company co: co.name !'= name

Case 3:
company.name != name &&
exists Company co: co.name == name

1 Software Engincaring | RATH Aschen

SE = |™M

614 Softvars Enginserng | RWTH Aschen

SE:=.

Test Cases Derived from Method Specification -2

In addition: use of postconditions

« Each case of the postcondition should be tested.
~ appropriate test data must be found!

Often, the boundary values and their neighbors
are of interest:
~ Classical boundary cases:

empty string, null, 0, empty containers

In this example, meaningful test data are:
-n,-1,0,1,n (nlarge)

More about this techniques in test lectures!

'+ Example:
context int abs (int val)
pre: true

post: if (val>=0) then result val
else result == -val
: + Case 1:
val>=0
« Case 2:
‘ val<0

.- Data covering these cases:
-n, -1, 0, 1, n (nlarge)

w15 Software Engiearing | RWTH Aachen

SE . |™M

MBSE

15. Testing and Simulation
15.4. Sequence Diagrams

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

SE .

Sequence Diagram as a Test Case Description

... And Associated Test Data

Auct

bidPol

nTest copper912: : timePol: theo:
Auction BiddingPolicy TimingPolicy Person

/'ﬁ «triggen
handleBid(bid] . .
/ (bid) «match:visible» is
«trigger» | rotum BiddingPolicy.OK| well suited for tests
starts the test
newCurrentClosing 12, bid)
return t
t.timeSe bid.time.timeSec
+timepol.extensionTime
ocL conditions
| \jheck properti
copper912.currentClosingTime==t && theo.message last==bm &)

« Test case description:
test object: Auction.handleBid(Bid bid)
test data: OD copper912 && OD BidStructure;
driver: SD HandleBid;
assert: §

OD BidStructure|

:Money

Time

long amount = 52290000
int decimalplaces =2
String currency = “$US*

long timeSec = 953647503
/String time = “14:54:03"
/String date = “February 21st 2000*

o7 Software Enginoaring | RWTH Aachen

SE - ™M

o1 ‘ Softvars Engnoerng | RWTH Aschen

SE =

103

26.12.2023

Sequence Diagram as Test Driver

‘AuctionTest « JUnit is suitable as framework for SD tests

| trigger» « setUp includes creation of the objects
// handleBid(bid) « trigger maps to a simple method call

«trigger» | « More about JUnit under: www.junit.org
starts the test

Complex Trigger - 1

import junit.framework.*;

1

2

3|public class AuctionTest extends TestCase {
4| Auction copper912;

5| Bid bid;

6| public void testHandleBid() {

i

8

setUp() ;
copper912.handleBid (bid)
9 // check assertions
10 tearDown () ;
1
12]}
o0 o Enginaerng | RATH Aach S RWTH

+ Multiple triggers require multiple method calls.

SD Treiber

o
>

o

otherMethod()

1 foreign method invocation is
ignored by the code
generation for the test driver

[«trigger»
mi()
«trigger» stereotype S e p—
marks constructive
implementation «tzn(gger;'
m2(args:
/ «trigger»
| m3()
|

return result can be used in the
arguments of the next method call

&0 Softvars Enginserng | RWTH Aschen

S it FeTH.

Complex Trigger - 2

- Triggers can be spread across several objects, this means a mock object is then be used in between.

« The mock object can also be generated from the SD:

SD MethodTest

Sequence Diagram as Observation

[(mes | [aa | [| [ws |
«trigger» method() ‘
foo()
«trigger method1()
«trigger» method2()
«trigger» method3()
/
T |~
the mock object realizes tasks of the test driver

+ When a part of the sequence diagram is to be
observed as communication between the tested
objects:

+ Possible realization approaches

~ reflection / debugging AP
not standard, not stable, thus better don't use it

instrumentation of object code
— instrumentation of source code: only if available

~ instrumentation by subclasses

validateBid(bid)

return BiddingPolicy.OK|

oz Softvars Engnoerng | RWTH Aschen

SE -

Monitoring of Calls

« Calls between the tested objects need to be copper912: bidP
observed. Here we use: Auction
validateBid(bid)

instrumentation by subclassing
— including a monitor for tracking method calls, their orders

and arguments: w

public class BiddingPolicyCheck extends BiddingPolicy { |

Monitor m; /

public BiddingPolicyCheck (Monitor m) { this.m = m; } /
-

m.callStarted(this, Monitor.ID_VALIDATE BID, bid) x— -
int result = super.validateBid (bid);
m.callEnded(this, Monitor.ID_VALIDATE BID, result);.— |

1
2
3|
4
5| public int validateBid(Bid bid) {
6
-
8
9 return result;

0

Y}

Monitor for Observation

=3 Software Enginearng | RWTH Aschen S RWTH

Main characteristics of the monitor:

« Calls and returns are registered at the monitor
arguments are: caller, method identifier, arguments

public int validateBid (Bid bid)

m.callEnded (this, Monitor.ID_VALIDATE_BID,result);

{
m.callStarted(this, Monitor.ID_VALIDATE_BID,bid) ;

+ Examined are
order of the sequence of calls and returns
~ correctness of the argumen
fulfilment of the invariants

« Stereotypes «match:*» have impact on allowed
observations :

— «match:free» for example allows an observed object to
communicate with several others in a similar manner

[
Monitor m
« Checks exp of &

calls vs. actual method calls

o2 Softvars Engnoerng | RWTH Aschen

SE =

104

26.12.2023

Monitoring a Sequence Diagram

for the R

Deriving the A

Procedure

:Person

nTest | a:Auction ‘

«trigger,
handleBid(bid)

sendMessage(m)

Nor
{— all persons of the auction receive

messages and are therefore
candidates for the object p

m instanceof BidMessage &&

p.company == *KPLV"

« Because of «match:free» object p may be ambiguous, because several persons may receive m

« The following OCL dition on p may

be invalid: this a

monitoring

« The efficient approach: Monitor uses a non-deterministic automaton to track the state, how far the sequence

diagram has already progressed

s Softare Engineering | RWTH Aschon

SE=. ™M

onTest ‘ a:Au

ction‘ | :Person

«trigger»
= 1| handleBid(bid)

intermediate states 2

sendMessage(m)

itial state, 3
inal state

/minstanceo BidMessage 8&
4 p.company == "KPLV"
5
(OCL constraint
tahandieBid _a psendMessage fyllfiled?) a tretum
3 4 5)—’(:
methods that
are ignore:
all excopt all excopt all except all legend: sender: receiver.method
“handieBidund *: treturn *:treturn sender: receiver-return
*:treturn * allows any object
RWTH

o ‘ Softvars Enginserng | RWTH Aschen

S ey

Sequence Diagram as Simulation Result

« Logs (protocols) can be represented as sequence
diagrams
~ Both: derived from real systems and from simulations

— Appropriate filters like «match:»
= on certain objects,
- kinds of communication (resp. material flows), and
- time frames
reduce the length of the logs.

- i isualizations and further
are needed.

+ SDs from logs are not necessarily causal, because
they only describe observations

timepol: bid.time: finish:
TimingPolicy| Time Time

getTimeSec()

return 14:54:03

getTimeSec()

return 15:00:00

turn 14:55:34.

return 15:00:00.

turn 15:00:01

return 15:00:00

w21 Software Engiearing | RWTH Aachen

SE=-

MBSE

15. Testing and Simulation
15.5. Statecharts

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

SE -

Applications for Statecharts

Statechart to check a Control Flow

1: Constructive use of Statecharts for code generation
~ typical: executable actions, rather detailed
— (already discussed in Statechart chapter)

2: Statecharts for tests
~ typical: logic formulae as state invariants and transition
postconditions
~ > logics can be understood as state based method
specifications

3: Statecharts as behavioral descriptions
~ typical: few details, underspecified in various ways,
abstracts from the real internal state
~ = can be used
« to check correct state transitions in test cases
= or as a template for deriving test cases

‘AuctonReady)
(imePol status ==
TimingPolicy READY_TO_GO]

‘AuctionFinished B
[imePo.status =
TimingPolcy.FINISHED]

s

AucionOpen
[imePol.statys == TimingPolicy.RUNNING]

‘AuctonRegularOpen Pm)

ston)

starExension()

[timePal.sinExtension]

AuctionExtondod
{timePolisinExtension) L bie..)

AuctionReady

[timePol.status
TimingPolicy. READY_TO_GO]

AuctionFinished
finis

[timePol.status ==
TimingPolicy.FINISHED]

AuctionOpen

‘ Statechart

ish()

[timePol.status ingPolicy. RUNNING]
AuctionRegularOpen bid(...)
imePol.isinExtension] | startExtension()

AuctionExtended
mePol.isinExtension] | bid(...)

29 Software Enginoaring | RWTH Aachen

driver: auction.start(); auction.startExtension(); auction finish();
statechart: /aumon RunAuction from AuctionReady to {AuctionFinished }
observed name of the initial list of possible auction object is defined
object statechart state final states inan object diagram
(not shown here)
0 Softvars Engrerng | RWTH Aschan RWTH

105

26.12.2023

Test Coverage for a Statechart

« Coverage: How well does a set of tests cover

possible behaviors? tatechart]

State coverage: {Runfuction

~ each state is traversed by a test e
AuctonReady

Transition coverage: g

— each transition is traversed by a test

Path coverage:

~ each path is traversed by a test [W‘

“AucionOpen
[imePol.status = TimingPolicy RUNNING]

‘AuctionRegularOpen b}
UimePolsinExtension] [starxension)
‘AuctionExtended
[imePolisinExtension]) ..

sarg

status
TimingPoiicy READY_TO_GO|
| JimingPolicyREADY_TO_GOI

~ (but impossible when a loop is included) foish
Minimal loop coverage:
~ acyclic paths + traverse through each loop once

[smePol status ==
INISHED]

TimingPoicy.F

« Further coverage criteria distinguish alternatives in
conditions, invariants, ...

« Coverage can systematically be measured using a
monitor.

= Software Engincaring | RATH Aschen S RWTH

Deriving Tests from a Statechart

+ Coverage can systematically be measured using a
monitor.

N
ingPolicy RUNNING]

(" AuEeROpen
‘AuctionReady {imePol stal

But it is also possible to systematically derive tests
from a Statechart to reach the coverage:

rimePol status == <) N
| TimingPolicyREADY_T0_GO] ucionReguiarOpen | JP(-)
« For each path: “pwu isinExtension] |_stertExtsasion)

— calculate the test data that executes the path
.. an object structure including attribute values

clionFinshed

fimePol status ==

AuctionExtended :}‘j’
TimingPolicy.FINISHED]

[imePo sinExtension]) t5(.)

Strategies are:
~ Backward analysis: calculate attribute values from the
desired result by stepping back along the transitions

~ Use symbolic execution (i.e. values remain abstract)
along the symbolic computation
~ > related to verification
(i.e. the symbolic manipulation in these tools)

&2 Softvars Enginserng | RWTH Aschen S | RWTH

Example: Test Cases for the Auction Statechart

« State coverage requires only one test cai—/\ [:ls";" o bid
Input: start; startExtension; finish—— startEx.

Appendle

Sample Task: Policies for Extending an Auction

+ Requi : (1) If a bid is just before the end of the auction, the auction will be extended by up to
extensionTime seconds. (2) auctions always end up between firstClosing and latestClosing

finish N .
bid « Three Policies:
Tr;ns_gwop cg]yerege ar;d'm\mmal path coverage e T _ NONE: there is no extension
coincide in this example: ~ CONSTANT: the extension is always the same delta.
+ Two paths are sufficient, but are also necessary, ~ LINEAR: linear decrease of extension, but at least MIN_DELTA.
because finish can be exited from both sub states. T et bid . X
Input: start; bid; startExtension; bid; finish etarEx * The graph illustrates the granted extension delta:
Input: start; finish —M———— finish i calculated delta (CONSTANT)
\ s bid extension
: " . - (delta) delta (LINEAR;
« Path coverage is not possible, because of two bid- elta)
loops, i.e. infinitely many paths of forms exensionTime
Zr{ bid st nEx}: i y%a finish d (69305
— start; bid;* startExtension; bid;* finist an start
~ start; bid;* finish = . MIN_DELTA delta (NONE)
and their prefixes. (typically 5 sec.)
finish auction beginning regular end of auction final end of the extension
(startTime) (firstClosing) phase (latestClosing)
(e.g. after 2h) (e.g. after 2,5h)
o Softere Engioaring | RWTHAachen S RWTH o Sotvare Engiosarng | RWTH Aschen S RWTH
== S
Appem:ﬁ)(L Appendix
Exercise, Part 1: A Solution Approach/Oracle for newCurrentClosingTime
bidding time end [methods Statech:
1) Implement method newCurrentClosingTime that Auction (Auction a, Bid
calcu\gtes the new closingTime in the structure int currentClosingTime [a.extensionType==LINEAR] ¢
given in the CD int firstClosing ((CinearbecreaseOtExtension \
int latestClosing ’_‘[enwmenz = 2 extensionTime * (aates(Closing—now)
2) Design a Statechart for the method representing the ExtensionType exType . w:;‘;:&;’; . (a latestClosing- a.firstClosing) l
cases and variants over the control flow. int extensionTime /1 enum values: [delta < MIN_DELTA]
LINEAR, ConstantExension ¢/ delta= MIN_ DELTA | dota = MN_DELTA 1€
CONSTANT, cetae -
3) Identify a set of paths that achieves state, transition NONE Sntnldeta a erensiontime
respectively path coverage. . . [delta» 2 extensiontime] Gl e
4) Develop a set of test data for each path. TimingPolicy
final int DELTA_MIN
5) Test your implementation with each record. int newCurrentClosingTime [old > nowsdefta] ¢
(Auction a, Bid bid) S astensionTime | N jnow = ol
Imm*mqlu <= a latestClosing] ¢
e LR S 1
=N =N

106

26.12.2023

n
[Appendix

Exercise, Part 2:

5) For this Statechart, identify a set of paths that
achieves state, ition and path ge.

F [o ert g T —
T —

i (Rucion 3

e mermnpamnean

6) Develop test data for each path o I - 1
) ’ ’ (mpras] B A e
7) Derive/Generate an oracle from the Statechart [rm.mmm } | o6 J

8) Test your implementation with each of the records
and compare the actual result with the result of the
oracle.

o> owsceta] ¢

= Softare Engineering | RWTH Aschon S RWTH

Solution for Coverage -1

‘Appendix |

« State coverage is possible with three paths:

« Transition coverage has not yet been reached by this.
However, four paths are sufficient:

=Y Softvars Enginserng | RWTH Aschen

Appendix i

Solution for Overlapping - 2

« Path coverage (identical to the minimal loop coverage, since no loop is present, 18 paths):

because of invariants in the algorithm, these paths cannot be taken by
any chance and thus also cannot be tested

o3 Software Engiearing | RWTH Aachen

SE=. ™M

MBSE

15. Testing and Simulation
15.6. System Simulation

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

=

Definition Simulation

Simulation For Testing Model and System Quality

A simulation is the imitation of the operation of a real-
world process or system over time. Human-in-the-loop
simulation of
outer space

« Simulations require the use of models.

Simulation is used in many contexts, such as

~ simulation of technology for performance tuning or

~ optimizing, safety engineering,

~ testing,

~ training, education, and video games

~ scientific modelling of natural systems or human systems
to gain insight

~ to show the eventual real effects of alternative courses of

+ Key issues in simulation:
— relevant selection of key characteristics and behaviors
used to build the model,

action d the -
~ the use of and
within the model, and
~ fidelity and validity of the simulation outcomes.
(partly adapted from Wikipedia))
o1 Sotvars Engneadng | RWTH Azchen

SE.- ™M

« Simulations require the use of models.

« Key questions that can be answered when simulating
in engineering:

— 1) Will the final system fulfill its requirements?
- Given: requirements and models

~ 2) How will the system behave in specific situations?
- Given: models and situation description of interest

Geometry, materials,
function and software models

o2 Softvars Engnoerng | RWTH Aschen

S

107

26.12.2023

Simulation For Testing Model and System Quality

Model-Based Systems Engineering at Airbus

physical components: software
Geometry,_ materials models
and function models

5 B o : =
k2R e
This question 3) has many facets, but this is

3) What is the quality of the designed models
vs. fidelity and validity of the simulation outcomes?

system from the model exists, e.g.

\
especially relevant when automatic derivation of the Y
~ in software with code generation

— for systems with 3D printing

« i.e. when simulation and product partly coincide? target-adaptive

3D-printing, |

MBSysEng

Systems
Engineering
‘Across all engincoring
Throughout the ife-cycle | disciplines

Systom dosign | Product veriication

Simulation models for
design
- Architecture validation

Structured design
+ Alignment with top level objectives

+ Master geometry design

- Viral

- Configuration management

+_Baseline definion and change management

« Virualintegration

+ Technicalisk

+ Continuous inegration
miigation)

production, ... code generator
+ 4) What s the quality of the designed models l l
vs. correctness, reliability, security, safety, etc. i
of the generated outcomes? -
-
o Softere Enginerig | RWTH Aschen S RWTH 6 Softare Engiserng | RWTH Aschen S RWTH
Dev 1t of A Mobile Sy Conditions of the DARPA Urban Challenge

* ... on the example of participating in the ﬂ[lﬁﬂze“

« Design, implementation and quality assurance for
~ situation detection
— situation classification
— behavior generation

« For autonomous driving in sub-urban scenarios

* Team:

~ and Software Engineering

“Pass Californian driver’s license test”:

+ Drive safely!

* 4 way stops, yield way,

+ Autonomous mission:
~ 60 miles in urban area

(4 Way Stop, Track C)

o5 Softere Engioaring | RWTHAachen RWTH oo Sofvars Engosrrg | RWTH Aschan RWTH
| SE- SE .
One of the Scenarios in the Semi Finals Assurance of Software Quality: Virtual Runs in the Simulator
behavior Model of street Test: Correct
and obstacles route chosen?
Test: Correct
traffic lane?
(TrackA) Languages: DSLs for scenarios (CD+ layout+ Statecharts+ sequence diagram)
DSL for geographic & time-dependent traffic rules
o Softer Enginoaring | RWTHAachen RWTH o Softvars Engrerng | RWTH Aschan RWTH
SE=- SE .

108

Agile SysML-based Systems Development: Models for Code and Simulation

physical components: ftwa imulati
Geometry, materials f:ode|;e osek access ::':: eTsm" test
fi . package infrastructure
?‘E% : . package
Ay Ty i
, B Y oy

Y

l 1

software componel test /simulation
APIs, handlers rastructure

0 ‘ Softare Engineering | RWTH Aschon S ‘m"

MBSE

26.12.2023

16. Evolution through Model Refactoring H

16.1. Evolution

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

Evolution

Evolution is an Intrinsic Concept in Agile Development Processes

CTr—"

« Software must be adapted frequently:
~ new requirements
~ changed technology
~ new connections to neighbor systems
~ troubleshooting

+ Techniques for the evolution of legacy systems, such * Objective:
minimizing risk

« Software must be enhanced frequently: Reuiements
~ new requirements
~ changed technology
~ new connections to neighbor systems
~ troubleshooting

+ And therefore modern development processes
embrace evolution
~ minimizing risk
— increase developer effectiveness

« through
~ small iterations
— automated tests
- refactoring techniques:
transforming development artefacts (models, code)

as
— reverse engineering: extraction of the original design increase developer effectiveness
models from the source code (object code) * by: X
— wrapping: wrapping code of an older technology (Cobol, ~ small steps through systematic, manageable
mainframe) into a modern access layer (Java, Web) transformations
~ use of architecture and design given by models
- Evolution traditionally consisted of one or a few large * Prerequisite for quality d model-b;
steps (transformations) with a high chance of failure evolution:
- code generators
- automated tests
— library of model transformations
o5t Softere Engioaring | RWTHAachen S ‘ RWTH
s

652 Softvars Engnoerng | RWTH Aschen

Evolution of Models

« The goal of model evolution is the systematic transformation of a model to
~ improve the structure / architecture of a system while
~ maintaining the observed behavior

Example for a typical “refactoring™: subclass methods are generalized and moved into the superclass

Person
I:> checkPasswd()

checkPasswd() checkPasswd() []
Bidder | ‘ Guest |

/\

Bidder Guest

o5 Software Enginearng | RWTH Aschen S ‘ RWTH

=

MBSE

16. Evolution through Model Refactoring

16.2. Principles of Refactoring

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

26.12.2023

Model Transformation Model Transformation

+ Amodel transformation is a purposeful, executable Transformation + Amodel transformation is a purposeful, executable Transformation
mapping of a given model into different one. mapping of a given model into different one.

Mapping is executable by a development tool

+ Examples of transformations « Evolutionary transformations: « Properties of model transformations: « Transformations within a language can be used for:
(that are not evolutionary, but helpful):
~ adding get/set methods ~ bijective (injective, surjective?) ~ refinement / abstraction
— transformation of class diagram to Java moving an attribute to another class bi-directionality? normalization
transformation of class diagram to SQL statements — merging of two classes — abstracting (forgetting)? ~ evolution
extraction of analysis data adding details? information extraction
minimization of statecharts semantics preserving / refining?

~ within or between languages?
deletion of unused components in an architecture

a5 Software Engincaring | RATH Aschen S RWTH o6 Softvars Enginserng | RWTH Aschen S | RWTH

Refactoring Methodology of Refactoring
« Refactoring is a special case of transformations: « Strict distinction of activities: amount of goal:
Fowler'99 uses refactoring on the code-level (Java) refactoring vs. modeled Reach a relatively
~ refactoring was originally introduced in '92/93 by ~ extension of functionality functionalty /™ good design and
Opdyke /Johnson for C++ ¢ 100% of the

Refactoring primarily helps to improve architecture 100% functionality

« Definition of refactoring [Fowler '99]:

~ Refactoring is the process of changing a software system
in such a way that it does not alter the external behavior
of the code while improving its internal structure.

But: tight integration of refactoring and development
by the principle
“model a little, refactor a litle” (according to XP)

'\project progress

« Conclusion: \
— refactoring of models can be used for the evolution of X\ further development: adds new features, quality of design
systems. but usually reduces the quality of design .
refactoring: improves design while (“optimal”
preserving the functionality starting point for development
os7 Softere Engioaring | RWTHAachen S RWTH o Sotvare Engiosarng | RWTH Aschen S RWTH
Tests are Observations for Evolutionary Transformations Validation of Transformations
« Tests observe the structure and behavior of a system execution: « The observation remains intact under the transformation.
U Test = driver and “observation” E [| Test = driver and “observation” E
construction observe! observe! checks compares wih AN
& call creation| interaction property respu“ observation
“snapshots”
of the "
system run = transformation
v A
GEG G
current system running the modified system
timeline « Butin practice: often structural parts are changed under the transformation

So '":'ﬁ’ S s, Y Sn "":’ « Therefore: acceptance tests base on appropriate abstractions and fixed interfaces

snapshot snapshot
oo Sotvars Engneadng | RWTH Azchen o0 Softers Engooorny | RWTH Azchan

SE = ™M SE ... ™M

110

26.12.2023

Refactoring of UML / SysML Notations

Refactoring of UML / SysML Notations

« Class diagrams object discuss
- diagrams sequence
- Architecture diagrams (IBDs) diagrams
* Code
class
diagrams
« Object diagrams %
+ OCL

statecharts architecture
diagrams
Statecharts 5 ﬁ

« Sequence diagrams

Class diagrams
- / design i very

Architecture diagrams (IBDs)

- / design i very
* Code

cf. refactoring literature

Object diagrams
necessary in the context of CD-transformations,
but: rather unexplored

+ OCL
logic has calculus, ion rules for

object
diagrams sel
quence
diagrams
class
diagrams

ﬁ%

architecture

Statecharts
ion rules for the i of

Sequence diagrams
i have not yet been developed

i statecharts

diagrams

st Software Engincaring | RATH Aschen S RWTH

&2 Softvars Enginserng | RWTH Aschen

Example of a Transformation of Code

Applicability Conditions

transformation source
(here an expression with
schema variable a)

Transformation |

a+a .
— expression a is free of side effects

and deterministic

-

result - 27 a - B o
applicability conditions

« For both Java and OCL, the entire algebra is available, which is formulated as equations:
—a-a == 0, atb == b+a, % && true == x

« Data type-specific transformations, for example in OCL:
- List{a,b,c}.first ==

« many transformations only apply under conditions, i.e. the applicability conditions:

+ Example: replacement of “equal”

1

+ Example: replacing a method call

f00(0,y) ... \1Nhen expression x has type A, y has type B:
.inv:

1. expressions a and b are free of side effects
2.a==

Transformation |

Transformation |

forall 4 a, B b:

+ Procedural code often has applicability conditions of the form: - bar(x,y,0) bar(a, b, 0) £00(a,b)
term is defined | deterministic | side-effect free.
oo Softere Engioaring | RWTHAachen S RWTH o Sotvars Engrnrng | RWTH Azchon S
Applicability Conditions Correctness of Applicability Conditions
« Expansion of a method body: « Treatment of applicability conditions:
analogy to the compiler principle of method “inlining”
N ~ automatic check based on the syntax: h jon x has type A
L £ (X, Y) ... when expression x has type A,
when a s of type A « examples: strong typing system, 4 y has type B:
1.class & (correct initialization of variables, ... bar (X, ,0) 1. inv:
T gerx0 1 . . : " forall 4 a, B b:
return 2 * getY(); semi-automatic check: bar(a,b,0) foo(a,b)
.2 * a.getY() 1 ’ - examples: model checking for system properties
2.getx () is not redefined in any subclass interactive verification:
« examples: correctness proofs in first-order logic e.g.
« When allowing r of getX() in conditions become more general, but also more based on a verification tool like MontiBelle s
complex " expression a is free of side effects
~ e.g., redefinition of getX() only within limits test)) and deterministic
= example: verification of invariants at runtime 2 *

« Q: What about checking the applicability conditions?

manual reviews:
= reviewer gives his/her “OK" on being “confident”

o5 Software Enginearng | RWTH Aschen S RWTH

=

o6 Softvars Engnoerng | RWTH Aschen

S Do T

111

MBSE

16. Evolution through Model Refactoring ”

16.3. Refactoring of Class Diagrams

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

.

Trafo

SE- ™M

26.12.2023

Sources of Refactoring Rules

+ Opdyke'93: 26 basic rules for C++:
~ often deleting and creating new program elements

+ Fowler'99: 72 rules for Java:
~ many of them explained using class diagrams
~ 68 small refactoring, manipulating some of Java elements
~ 4 “big refactorings”

REFACTORING

e

Excerpt from the List of Refactorings (Fowler'99)
~ Add Parameter

~ Collapse Hierarchy

Encapsulate Collection

— Extract Interface

~ Extract Method

~ Move Field (=Attribute)
Move Method

~ Pull Up Field

~ Remove Middle Man
~ Remove Parameter

~ Rename Method

~ Replace Array with Object

~ Replace Conditional with Polymorphism
~ Replace Delegation with Inheritance
Replace Inheritance with Delegation

~ Replace Error Code with Exception

o8 Softvars Enginserng | RWTH Aschen

RWTH

S o

Refactoring “Collapse Hierarchy”

« Removing a class in the class hierarchy

The rule can be applied in both directions
+ When removing: inherited code is moved into subclasses

~ special case to handle: subclasses override method and call “super()”
~ special case to handle: constructors

University Staff

=

University Staff

| Professor |

| Assistant ‘ ‘ Secretary

a9 Software Engiearing | RWTH Aachen

SE= |™M

Example: Moving an Attribute

* Attribute “att” shall be moved from class Ato B

/I Code
a.att

context A a im:
a.connection == a.exp/|

this can, for example, be validated by tests

/I Code
a.exp.att

610 ‘ Softvars Engnoerng | RWTH Aschen

Refactoring: Introduction of a Test Pattern for Static Methods

« Problem to be addressed:
~ class has a static method
— method has side effects
— structure is there not suitable for testing,
because method should be mockable in tests

« Solution: by transformation of the structure in three
refactoring steps
— 1) Replace Static Method with Singleton
~ 2) Mock the Singleton through Subclass
~ 3) Migrate Static Method for Encapsulation of the Singleton

« Applicability:
~ Static methods in general, e.g. protocols, logs, DB access
— Constructors (see also factory / builder pattern)

Class

+method(Arguments

ot Software Enginoaring | RWTH Aachen

Replace Static Method with Singleton

OldOwner

Method delegates its task
to a singleton object

+method(Arguments

singletonDummy
overrides the method in
question thus allowing to

mock the behavior in tests +method(Arguments)

Singleton
#Singleton singleton = null

le 'L+Siw' i)

class OldOwner {
static method(...) {

1

2

3| singleton.getSingleton()
4 _doMethod(...) ;
5

6

SingletonDummy

#doMethod(Arguments)

o2 Softvars Engnoerng | RWTH Aschen

SE .

112

26.12.2023

.. and Migrate Static Method for Encapsulation of the Singleton

OldOwner

Encapsulation of the calling
mechanism in the singleton

+method(Arguments

Singleton v

+Singleton getSingleton

g: Decoupling A

— Framework

+
« ... to prevent the users to
have to cope with the object

OldOwner
atall:

~ Users still have static
method available

Migration

Singleton

- Singleton getSingleton
+ method(Arguments}

1[class singleton {
2| static method(...)
3| getSingleton() .doMethod (
41}

o Software Engincaring | RATH Aschen

SE .|

«Application»
Aclass

«Framework»
Fclass

« Problem to be addressed:

~ the application uses a framework

~ framework has side effects / DB, GUI, Web, ...

~ use of the framework objects is inappropriate for testing,
because of the side effects

* Solution:
~ decoupling by using an adapter as mediator

« Applicability:
~ Any kind of normal framework (non reflective)

method(Arguments)

2 Softvars Enginserng | RWTH Aschen

S ey R

Decoupling with Adapter

«Application»
Aclass

«Framework»
Fclass

method(Arguments)

«Application» ' «Adapter o4 «Framework»
Aclass AdapterClass - Fclass
method(Arguments) method(Arguments)
introduction of 1| class AdapterClass {
the adapter as 2 method(. ..)
“man in the middle" «Dummy» 3| £class.method (.
AdapterDummy 4l yy
method(Arguments)

Large Refactorings

o5 Software Engiearing | RWTH Aachen

SE . ™M

are complex transformations that require planning
~ ideally, cut into small systematic steps

+ Examples

~ separate domain from representation (Fowler)

<ampmmant <camponents
et Venice

uiear

ar)
sopt)

r
‘ “companents

wcorpenenis
“componaris wagysowco | Batey
ElcticEngne o

a cylnderCapasty

r—

EneryTs skt ~cnametat)
~ convert procedural design to OO (Fowler) "
- S 2 <camponarts <systams
- of a complete from a wompooeis 1> - ot " . U
(GUI, Middleware, ...) e
S
~ complex changes of structure
(below) I
<campenents “components
\ o
l;":_j,mm] [————— e
——— Vivezmotcrae
rocparaionStorage
i pyrerey
o Sofvars Engosrrg | RWTH Aschan

SE .

Example: Changing a Data Structure

Action steps:

1. identify old data structure
here: ‘long’ replaced by ‘Money"
2. Add new data structure (DS) + queries
+ compile & test

Sellitem

long valuelnDM
Money value

3. define invariants to relate both DS:
context Sellltem inv IV:
valueInDM ==
value.asDM()

4. Add code for changing new DS wherever
the old DS is changed + compile & test

valueInDM = ...

based on

assert IV

5. Adjust code using the old DS to use new DS now
+ compile & test
alueInDM ...

- value.asDM() ..

6. Simplify ~ + compile & test

7. Remove old data structure
+ compile & test
Sellitem

State of the Art in Refactoring

o7 ‘ Software Enginearng | RWTH Aschen

SE . |™M

Extreme Programming provides the methodological
foundation

Eclipse, JUnit etc. provide techniques that assist
refactoring

~ test case definition, execution, management

~ measuring "code smells" (metrics)

~ support for simple and increasingly many big refactorings
~ generation of dummies and mock objects for testing

— status: still much to do!

MDA provides methodology for model-based
software development

~ code generators

~ transformation languages

~ status: MBSE tools are still improvable.

XP
= eclipse w <So

SYSTEMS
MODELING
LANGUAGE

O Junit5

oy

o Softvars Engnoerng | RWTH Aschen

SE .

113

MBSE

17. Functions Modelling Mechanics
17.1 Basics

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

Energy
Material Cyber-
Physical
Data System
Ep——— -

SE- ™M

26.12.2023

System Specification through Functions

« Asystem defines a function
~ This includes mechanics and digital parts
— Afunction describes the task of a product in a solution-neutral
manner

+ Advantages:
~ A) Mathematically very precise foundation
~ B) Function composition
~ C) Powerful modelling concepts

In Mechanical Engineering there exist several design
catalogues that list elementary functions and map
them to physical effects

Catalogue of mechanical functions and physical effects
considered in this lecture:
[KK98] Koller, R., Kastrup, N. Prinziplésungen zur
Konstruktion technischer Produkte. Springer, 1998

flows: input
Energy
Material Cyber-
Physical
Data System
E— -

_A

o
flows: output

system boundary

60 Softvars Enginserng | RWTH Aschen

S o

Elementary Function

Catalogue of El Yy F

Function is a mathematical construct relating input
and output (including history)

~ consequence: use of streams to model channels

~ functions can be composed

An elementary function is atomic in that sense that it
is not further decomposed.

[KK98] have shown that in Mechanics a catalogue of
elementary functions can be defined

+ Example from [KK98]: P P
i out

increase/decrease force

+ Modelled as Cyber Physical Function:

Forcea | Converter(n) Forceb

[KK98] have also shown that a catalogue of
elementary functions is useful in Mechanics

Roughly 350 elementary functions, such as:

~ transform electrical to mechanical energy

~ apply mechanical energy on fluid

— connect two solid materials

~ conduct force / light / current / ...

... (many examples will be discussed in the following)

Example: ,, transform electrical to mechanical energy*

LT

Elementary Functions in [1]

« An y function i the
+ The informal descriptions there usually contain + Modelled as geometric object with two pointwise interface, but not the physical (geometrical) Ul Fv
~ apicture or a verb + noun describing the I/O-relation interfaces: realization: e e
- 522:{"";‘ :‘Y:;z identified through the arrow-kind and the - — for their solution we use physical effects discussed later Electrical i
~ often corresponds to a mathematical equation F‘"E“- b Energya TransEfToMech(n) L7 [Energy b
b.force * b.velocity = n * a.voltage*a.current
o8t Softere Engioaring | RWTHAachen S RWTH o Sotvare Engiosarng | RWTH Aschen S RWTH
= ==
Catal of El y F i in ? Signature of Input and Output of a Function Rep. |
« [KK98] has ~350 elementary functions, which are « The signature of a function describes the forms of
successfully in use interactions of a system component with its Ener
environment. R
« Software Engineering does not have a catalog of . Material Cyber-
elementary functions, but also “building blocks™: Elementary Functions in [1] « Interactions are broken down to streams of elements, Physical
which describe the flow and can be of the kinds Data System
~ Math functions (+, *, pow) - data, ikl i
~ Container operations (list, set, map operators) ~ energy or
— material
~ 00 methods? (but we define fresh ones all the time ...)
— Classes in alibrary? « Interactions are organized through input and output
channels.
~ Design patterns, such as factory, adapter, state pattern, For software?
.. roughly 150, number i i .
roughly number increasing « The Interface of a Cyber-Physical System is defined
+ Software developers constantly create new through its function signature
elementary functions in OO methods and classes,
which they compose to large systems.
= =y

114

26.12.2023

Stereotypes for CPF and their Interaction Channels

Modelling Types of Channels

+ Wein this course define the following: « Principle picture: « The input/output channels of a function are described T “physics,
with special datatypes that we model as special forms qees
« for functions of classes Njab_s m/sabs
— «component» machinery, ... IRz dir R dir
« «system» machinery that is “complete” R? pointOfOrigin IR? pointOfOrigin
- «software» software (only), « We apply the interpretation of CDs for systems
bei h
- «being» umans, ... « is refined to: engineering ‘ “energy» | | “energy» ‘
« for communication/flow channels: - E.g., energy types model continuous flows > traditional N force “Acurrent
~ «materialy elements, compounds, alloys, ... interpretation is not suited mis velocity V voltage
+ luidy continuously flowing material, «energy» «energy» ~ there is no classic “instance” and *identity” concept, only
typically not countable —_— “values”, but continuously many ...
(Water, ges, sand) iy duids 'y many Classesto molZs/ /ﬂows 07 ‘mechanical
- ditem» discrete physical items, e.g. cars N energy and electrical energy
~ «energy» types of energy it M oe Cyber- «itemn» + Dependent on relevant properties e.g. Force may be
———— Physical b modelled with or without direction, ...
- «data» for data objects, basic data (e.g. int) «data» System «data»
- ceventy for discrete data that triggers ——— — MechanicalEnergy MechanicalEnergy
behavior «signaly «signal» « Acatalogue of common channel types, e.g. Converter
— «signal» for continuously flowing data (ARSI dependent on SI-Units, however, helps.
... and omit them when unambiguous.
ass Sofre Engineting | RWTH Aschen S RWTH e Sofvars Engrerng | RWTH Aschen S RWTH
Categories for the Catalog of Elementary Functions Translational glossary for [KK98] (English - German)
+ [KK98] i lementary functions by the of the function’s channels and the kind of transformation Elementary Function Elementarfunktion
performed by the function Design Catalogue Konstruktionskatalog
Processing Energy Processing Material Combining Material and Energy Elementary Function Elementarfunktion
(Inputs & Outputs are «fluid» xor « M Category of Elementary Functions Elementaroperation
. Transform Wandeln
{— Transform Energy [} AfixRemove Materialistic
_ Properties. = Apply Energy to Materials Collect Sammeln
I incicasaDocrossallss il = Separate Energy from Material oot Teten
[—Change Direction Materialistic Properties P oy Blend Mischen
Separate Trennen
{—Conduct N
Conduct/lsolate Material = Affix Hinzufiigen
(—Isolate
Mate Fiigen
| Gollect Mate/Unclamp Materials [><] Undlamp Lisen
L spit Principle Solution Prinziplsung
ElepcSpkhatorag (Physical) Effect (Physikalischer) Effekt
ek Engineering Material Werkstoff
L Separate CupE e = Active Surface Wirkflache
oa7 Sotwars Engneadng | RWTH Azchen S RWTH onn Sotvare Engiosarng | RWTH Aschen S RWTH
=N =

MBSE

17. Functions Modelling Mechanics
17.2. Elementary Functions: Energy Energy
Material Cyber-
Physical
Prof. Dr. Bernhard Rumpe Data____ | Svsem |),
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

Energy Processing Functions

« Elementary functions in this category
~ have an interface with purely «energy»-channels
~ Perform one of the operations shown on the right

|— Transform Energy
« These functions always obey energy conservation | increase/ecrease
— Use this for specifying the behavior of these functions!
|— Change Direction
+ Examples are:
~ Transforming electrical energy to mechanical energy using [Conduct =
electromagnetic induction as effect (e.g., electric motor) [Isolate [
~ Increasing/decreasing moments of force using adhesion as effect
(e.g. lever, gear box, wheel) | Collect =
~ Split force/torque using the leverage effect (e.g., differentials) S
gz = o =
> I—Blend]
L Separate
electric motor differential b
(Electromagnetic Induction) gear box
(Leverage effect) (Adhesion Effect)
o0 Softuaro Engoeorng | RWTH Azchan S RWTH

115

26.12.2023

Special Types in Energy Processing Functions

Force Di

y Function: Ch

Since it is unusual to work with energies directly in mechanical equations, [KK98] also allows the following
types as inputs for Energy
— Accelerations
Geometry descriptions in an energy equation (e.g. area, diameter, distance)
magnetic flux density; field strength
— electric flux density; field strength
Force, moment
frequency
Current
Alternating current
~ Light intensity
Sound pressure
~ Charge
Warmth Q; Temperature T
Voltage
~ AC voltage
Velocities
Wave length
Density

601 Software Engincaring | RATH Aschen S RWTH

‘We model Force as direction vector and point of origin

+ A CPF may change this direction

— Parameters: A € R¥3

Interface:

« Input and ouput energy described by: Forcex and Forcey

In general changing direction is modelled as linear
transformation using matrix A
« y.dir = A= x.dir

Example: rotation around an angle « in the x-y plane realizes
ChangeDirection with specialization:
cos(@) —sin(@) O
o d
1

sin(@) cos(a)
0 0

hysicss
Force.
N absAmount
 dir
R? pointOfOrigin

category of this elementary
function: Change direction

Forcex| ChangeForce Forcey
Direction(A)

Force
Forcex | RotateForce | _Foreey

InXYPlane(a)

2 ‘ Softvars Enginserng | RWTH Aschen

Elementary Function: Conduct Force

Elementary Function: Energy Transformation

Conducting force changes the point of origin of an
incoming force

S
Force ="
+ Mathematically this corresponds to a translation: N absAmount Forcex) ConductForce(v) {Focey
~ Point of origin of the force vector is changed s
— Underspecify whether direction is changed R* pointOfOrigin

We specify Conduct Force as follows:
— Parameters: offset v € R® Forcea
Interface: In/out as before

_ Behavior: possible realization: drive axle

« x.pointOfOrigin = t + y.pointOfOrigin
- for given A € R¥3: x.dir = A »y.dir 7] f
We model it underspecified, whether the function also { Jw
changes the direction of the force

« E.g.inacar, drive axles perform this function:

o5 Software Enginearig | RW

“energyy energyy
« Energy transformation is a conversion
N force: Acurrent
ms velocity V voltage

« Function interface:
Input Energy and type
~ Output Energy and type

MechanicalEnergy a
==
Behavior:
« law of energy conservation
« Tackling loss, because there is always a loss:

« A) Ignore the loss, deriving a wrong, but still
useful model

. force « b.velocity = a.voltage »a.current

TransMechToE| =) ElectricalEnergy b

—

]
(Lossfree model)
Y
A ‘

BlectricalEnergy a TransEfToMech L1 | MechanicalEnergy b
=" b.force «b.velocity = a.voltage +a.current |
o34 || o Exoosmg | W Amen RWTH

S =

Energy Transformation with Loss (Deterministic Version)

Energy Transformation with Loss (Underspecified, Correct Version)

wenergy» energy
+ Tackling loss, because there is always a loss: 2o ettribute
| force * velocity N force Acurrent
ms velocity V voltage Derived attribute
« B)Add loss as parameter L eneny Y yotege ey
current * voltage

(here: efficiency factor n):

= Describing efficiency of the transformation
TransElToMech 7] |MechanicalEnergy b

— Observe: nis a parameter and thus fixed

—
i i Electrical-| emergy = b.energy
during operation

_ Thus, the equation is deterministic Energya Vi 0ld lossfree model!
and loss is fix over time.
« The model still is not completely correct Electricaly =
N - N " 3 Al ElToMech 6,
(which n, n fixed?), but potentially closer to reality ~ heT8Y3 CEE R) MechanicalEnergy b

b.energy = n »a.energy Energy loss
« Open question: Where to connect channel loss? a.energy = b.energy + loss

~ E.g. as heat or out of the system ? V2: Usually 0.7 < <099

= Software Enginearng | RWTH Aschen S RWTH

Tackling loss, because there is always a loss:

C) Define loss as range
(defined by parameters)

Arange of efficiency values N, and Ny, Electrical-,
Energya
+ The model is now underspecified: b |

~ Arange of behaviors may occur

~ and thus many implementations are possible

Electrical-
deviations due to (uncaptured) system context Energya
influences can be taken into account —_—

~ degeneration (over time) can be taken into
nt

“energy> “energyy
N force Acurrent
ms velocity V voltage
1J energy /J energy

TransElToMech(n) =] MechanicalEnergy b
b. =nx
energy = n +a.energy Energy loss
a.energy = b.energy + loss o

V2: Previous deterministic model

TranSEMOMech (N, M) =2 MechanicalEnergy b
b.energy < n,,,*a.energy —
b.energy = n,, = a energy
a.energy = b.energy + loss

Energy loss

V3: Correct, but underspecified model

6% Softvars Engnoerng | RWTH Aschen

S = RTH

116

26.12.2023

Energy Transformation with Loss (Correct, Incomplete Version)

‘ “«physics» | | «energy» ‘ | «energy» |
« Still tackling loss: Power.
Wvalue N force Acurrent
« Underspecification also allows to omit channels: ms veloity V voltage
~ e.g. channel loss is omitted N
Electrical-

TranSEMoMech(ny, M) =)
b.energy < n,,, a.energy

« This is a valid model nergy a MechanicalEnergy b

Energy loss

L/

TransElToMech(nyip, Niax) =] MechanicalEnergy b

* But:
~ law of energy conservation cannot be stated anymore
~ (ok, let's live with it) @

a.cnergy = b.energy + loss

@ b.energy > n,,, *a.energy

V3: Correct, but underspecified model

« This allows various interpretations:
~ more channels are possible, but hidden
(loss via wind, sound, heat)

Electrical-
Energya

b.energy < n,,*a.energy
~ or the lost energy is actually stored internally
(e.g. as heat)

b.energy > n,, *a.energy
a-onergy-—brenergy~loss

V4: Correct, but omitted output channel

Energy Transformation: Examples

« Other for energy
+ (We use the simplified deterministic variants)

« An electrical heater transforms electrical energy to heat

— Parameter: n (tells the efficiency)
— Interface:

« Incoming ElectricalEnergy a

- Outgoing Heatb

« Alight bulb transforms electrical energy to light:
~ Parameter: n (tells the efficiency)
~ Interface:

« Incoming ElectricalEnergya
« Outgoing Light b

+ Upcoming: There is an interesting dualism of light as

wenergy» ‘ ‘ wenergy» | | wenergy» ‘
HeatEnerg Light
W heatflow ‘ Acurrent W flux
V voltage

ElectricalEnergy a

ElectricalEnergy a

TransElToHeat(n)

Heat-
LA Energyn,

b.heatflow = n a.voltage » a.current

Usually n = 143

TransElToLight(n)

LA Light b

a.voltage + a.current = n + b. flux

energy carrier and light as a carrier of ir

Usually 0.01 = n < 0.25M%1
W.2009)

nieure. Vieweg + Teubner.

sa7 ‘ Software Engincaring | RATH Aschen

e Softvars Enginserng | RWTH Aschen

S

Electromagnetic Waves as a Carrier of Energy: Solar Generator

« Electromagnetic waves, such as light, carry energy

ElectricalEnerg Light

« In case of the sunlight this is due to nuclear fusion
within the sun that releases energy

Acurrent W flux
V voltage

TransLightToEl(n, A) 71

« Radiant flux (W) is the amount of energy emitted per
unit of time Lighta

MBSE

— The radiant flux that is to be transformed depends on the Ehalacepb S S Electrical- 17. Functions Modelling Mechanics
geometry of the light-sender (e.g., the sun) and the Energy b 17.3. Elementary Functions: Material Energy
surface it hits .
Material Cyber-
- Physical
~ Interface: Two contacts, one Data port —— Data System
= in: Lighta Prof. Dr. Bernhard Rumpe aa_ _———
- out: ElectricalEnergy b Software Engineering
~ Behavior: RWTH Aach
+ b.voltage « b. current = n *a.flux achen
http://www.se-rwth.de/
o0 Sotwars Engneadng | RWTH Azchen S RWTH.
Material Processing Functions Combination of the Car Body and the Engine
« Elementary functions in this category ey ey temy
~ have an interface with purely «material»-channels Processing Material « Interface: Powertrain CarBod: Car

(i.e. «fluid» or citem»)

§ (Inputs & Outputs are «fluid» xor «item»)
~ Perform one of the operations shown on the right

Affix/Remove Materialistic
Properties.

« If the interface sig contains only «ite h Is the
function exhibits discrete behavior

increase/Decrease Values of
— Very similar to the behavior of software functions! i

I
Materialistic Properties

+ Examples are:
~ Mating physical parts made of metal (e.g. screw connection)
— Conducting water (e.g. pipe), conducting screws (e.g., conveyor belt)
~ Blend water and oil (e.g. emulsion)
— Separate plasma from blood (e.g. centrifuge)

Conduct/isolate Material

A
=
=
[

Mate/Unclamp Materials

ot Blend/Split Materials
"
l conveyor belt T . Compound/Separate (=]
P
u{enm’fuge screw connection

~ Two incoming material items are combined to form one
outgoing material item

* Behavior:
~ The powertrain needs to arrive first
— Once also the CarBody is there
~ The function builds the car from the two input items

« This is perfect for an object-oriented description
- operating on material items
= creating a new “object” of class Car
and attaching powertrain, and car body to it
Encoded as “method”, e.g. ¢ = buildCar(pt, cb)

+ Please note: objects represent physical items, not
data about them

Powertrain pt

CarBody cb

car body

powertrain &

Carc

o1 Software Enginoaring | RWTH Aachen

SE . ™M

2 Softvars Engnoerng | RWTH Aschen

117

26.12.2023

Combination of the Car Body and the Engine: Behavior Functions that Combine Material and Energy
ey ey <tem» | LCD4Phys] « Elementary functions in this category
« Behavior is specified by an automaton Powertrain CarBod Car — have an interface with channels of mixed sorts i.e. «fluid» or «item»
* kg mass. o and «energy» Combining Material and Energ
pt:powertrain / Statechart Q mass 9 g mass ~ Perform one of the operations shown on the right (Mixed Input/Output forms: «fluid, «item»
cenergy)

empty

Powertrain pt
P Care - Examples are: Apply Energy to Materials
CarBody cb ~ Apply Water with Mechanical Energy (e.g., paddle wheel)
| buldon T ‘cb:carbody / ~ Separate Chemical Energy from Fuel (e.g. combustion chamber) PSP————
« describing:
~ powertrain and carbody are combined car body
* And also:

~ order of arrival: powertrain comes first
~ Statechart describes behavior of a component,
but also obligations for the input

powertrain ¥

padle wheel

combustion chamber

o Softare Engineering | RUWTH Aachon S

0 Software Engincaring | RATH Aschen S

Apply Energy to Material: Heating up Water Functional Composi : Water Boiler
physicsy energy» “cuidy CD4Ph
« Heating up water: « Awater boiler is composed of the functions that NF Force. | | ‘ Water |
~ apply thermal energy to the water W heatflow K temp ~ Allows manual switching on off the power supply R dir [wheatiow | [Kiemp]
~ Transforms electrical energy to heat R? pointOfOrigin
« Parameter: ~ Heats up the water
~ Thermal conductance: W/K n Water} This model
M IS model reuses WaterBoiler(W/K k, double n)
HeatWater(W/K k) Water o .
« Interface: HeatEnergy h WK - awnc‘;w/ s ('zir)“ Chapter 2)
~ Incoming material Water i ~ HeatWater(
— Incoming energy: HeatEnergy h Force f z TransEloHeatn) t ™
~ Outgoing material Water o b.heatflow =
n *a.current *a.voltage
« Behavior: Electrical-
~ Generalization of the Law of convection that abstracts from Energye HeatEnery h
geometry and materialistic properties:
= (o.temp - i.temp) *k = h.heatflow HeatWater(k) h
Wateri (i.temp — o. temp) + k = h. heatflow
s Sotwars Engneadng | RWTH Azchen RWTH 70 Sotvare Engiosarng | RWTH Aschen S RWTH
s e
Sensors
« Broad definition of a sensor: -
- [...] a sensor is a device, module, machine, or @ u
subsystem whose purpose is to detect events or o
changes in its environment and send the .&\\
MBSE information to other electronics, frequently =™
i)) a computer processor. [Wikipedia] N \/
17. Functions Modelling Mechanics (0Xo)
17.4. Elementary Functions: Sensors and Actuators Energy -‘
Material Cyber- . Sensor§))
Physical ~ Read information from material or measure energy
System
Prof. Dr. Bernhard Rumpe Data_ »| ~ Encode the information as data values or data objects «data» Measures
Software Engineering
~ Sensors do not modify the measured things: o = | “'“2‘_9“6‘*
RWTH Aachen - (at least in this abstraction) Thing «material Thing o
http://www.se-rwth.de/
S RWTH Y Sotvrs Engioearng | RWTH Aschen S RWTH
s o

118

26.12.2023

Ampere Meter

« An ampere meter measures a current
« Interface: Two contacts, one signal port

— Input energy: EIEn a

~ Output energy: EIEn b

— Output data: MCurrent d
* Behavior:

— Defined by means of energy conservation:
*» b = a (disregarding any losses)
— Measurement result (ideally): d.value = a.current

« Note 1: Some deviation can be specified, e.g.

— |d.value — a. current|
< 2% * a.current + additiveMinDeviation

energyy

«data»
MCurrent
Electrical- | g oremoter
Energy a .
A Electrical-
Energy b

Ampere Meter and Digitalization

+ Note 2: The data object uses ideal value i (real
number) and is not digitized here.

amore implementation oriented spec could use another
type like
= A<float> value ampere measured as float

* Note 3: Channel d is discrete in time, while a, b are
continuous

— a precise definition encompasses
= time — =T

= sampling frequency U

* measurement delay

energyy

c
Acurrent
V voltage
«data»
cPr
MCurrentd
Electrical- | poeroroter
Energy a
- Electrical-
Energy b

= + deviation ~" ~ N\ Mo
s
T
o0 o Enginaerng | RATH Aach S RWTH o Sotvre Engineerng | RWTH Aschen S RWTH
Vorlagen Motion Sensor

time g,

m Software Engieing | RW

Hachen,

Motion sensor detects movement within its area of
reach

Interface:

~ Infout: Human a

~ Out: Event that can be used for triggering some software,
event can carry additional information e.g. height of person

Behavior:
~ Humans remain unchanged: b=

— aff] # absent = s[t] = MotionEvent{(...)

Items or fluids, e.g., in production context, can be
measured similarly @

Human a
—

Tav
MotionEvent

wm \E

MotionEvent s

MotionSensor

—
Human b

MEs

nz Softvars Engnoerng | RWTH Aschen

S e RTH

Light as A Carrier of Information: Image Sensor

Image Sensors read information tr
through light

e ignah ignal
Malrix<RGB> pixels um wavelength | [Matrix<LightRay> rays.

In this case, light acts as a carrier of information
encoded in its wavelength
(and we ignore energetic aspects)

Function of the Image Sensor:
~ Interface: two contacts, one data port
= In: Lighta
- Out Images
Behavior:
« For m: pm — RGB from e.g. @ree)
« Vij: s.pixels[i,j] = m(a.rays[ij]. wavelength)

Similar kinds of sensors: Microphones

Image s
ImageSensor ——

s Software Enginoaring | RWTH Aachen

Dualism of Light as Carrier of Information and of Energy

+ Many items, forms of energy, can be model in various
ways, e.g. light or also current
we model the relevant part and abstract the irrelevant

+ A: Light carries information through its wavelength:
Encodes color
— Information whether sb./sth. passes by

~ Image sensor reads the information encoded in a light
signal and transforms it into data objects

+ B: Light also transports energy through radiation,
intensity
Transformers transform this energy e.g., into electricity

LightEnerg

LightSignal

LightSignal a | ImageSensor Image s
=i —

i+ s.pixelsli] =
(a. rays[i]. wavelength)

Electrical-

LightEnergya | TransLightToEl(n, A) [7] Energyb
Jiit

— b.current » b.voltage =
n+a. flux

e Softvars Engnoerng | RWTH Aschen

26.12.2023

Actuators

Definition of Actuator:

avalve. [...]
An actuator requires a control signal and a source of energy. [...]

converting the source’s energy into mechanical motion.
[Wikipedia]

An actuator is a component of a machine that is responsible for
moving and controlling a mechanism or system, e.g., by opening

When it receives a control signal, an actuator responds by

Actuators
— Transform an input energy
— According to an input control signal or data

o P Color Laseret
2550PCL5 Coee

printer driver ~__" Diver

s Software Engincaring | RATH Aschen

S

Electric Motor Actuator

+ The electric motor uses the input electrical energy to
© produce the power requested by the input signal

* Interface:
~ Incoming signal SpeedSig s
~ Incoming energy ElectricalEnergy a
~ Outgoing energy ElectricalEnergy b

, + Behavior
0 — The actuator produces the speed encoded in the signal:
« b.speed = s.speedVal
- By transforming the incoming electrical energy:
« ‘b.force *b.velocity = n *a.current *a.voltage
« Parameter:
~ Efficiency of the energy conversion n

+ Again with some simplifications / abstractions ...

energy»

| | signal> ‘ energy»

SpeedSig
Acurrent m/s speedVal N force
V voltage mis velocity
SpeedSigs Mechanical-

Encrgy b

Energya

e Softvars Enginserng | RWTH Aschen

S e

Printer

The printer driver converts a file to be printed into a
format that a printer can understand

Interface:
~ Incoming data: Job printjob containing the file to be printed
~ Outgoing: Physically printed document

* Behavior:
~ dtext = printjob.f.content

Abstracts from energy and paper sheets

LN e

dtemy
Document

datar
Job

i
String content

Job printjob
Document d
Paper p

Pixel[J] pages

nr Software Engiearing | RWTH Aachen

SE =

P
MBSE

17. Functions Modelling Mechanics
17.5. Elementary Functions: Transport

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

Energy
Material Cyber-
Physical
Data System
_——— ———
RWTH

S i

Transport of ltems

« Transport brings an item from one position to another
« Position is tricky ...

« Position is usually modelled as state, but de facto itis
not internal.
~ Component’s context can experience the position of an
item (e.g. see it)
~ Position is relative to a reference point, e.g. earth
coordinates or relative to a point zero in a room

i

Something x Somethingy
=

Transporter
+ The approach:
— The incoming item has a position that is changed by the
function to the desired destination 1 “«position»
pos. PhysPos

« PhysPos describes physical position, orientation, ... Rip
Orientation o
ms velocity

o Softer Enginoaring | RWTHAachen RWTH

Transport Specification

+ The approach:
~ The incoming item has a position that is changed by the
function to the desired destination

«+ Transport interface:
— ltem in/out: Something x

+ Only the destination changes:

i

i Somethiny
) y.pos # x.pos A restremains Transporter 2y
« We abstract from
— The energy needed to transport x
~ The path taken by the function to transport x dtom 1 “position»
~ The time needed pos PhysPos
~ The load (multiple items in parallel?) R
Orientation o
m/s velocity
S Softvars Engrerng | RWTH Aschan RWTH

SE .

120

26.12.2023

Transport With Destination Specification

Transport With Destination Guidance

+ The approach:
~ Add as input the destination position (a data value)

Transport interface:
— Item infout: Something x
~ In: «data» Position dest

Item arrives at destination :
y.pos.p = dest.p

«data» Position dest

+ The approach can be used when item is passive
The movement of the transporter component is not

Something x

Transporter

Somethingy

+ The approach:
~ Add the element to be transport into the transporter
together with guidance information leading to the
destination

« Transport interface:
~ Item infout: Something x
~ In: «data» Control guidance

“<componert
Transporter

PhysPos pos

Optional<Something>s

Somethingy

modelled yet
«data» ditom» 1 cposition»
Position pos PhysPos
s | 3
R3p [3
Orientation o
ms velocity
2 Softr Engineeing | RWTH Aschen RWTH

«data» dtem» 1 «positions
Guidance pos PhysPos
+ Atransport with destination specification is realized if R® XAngle R p
the controller that calculates the guidance to reach the | R? yAngle g;:cﬁg:'l‘yc‘
target is taken into the system boundaries R? zAngle
2 Softare Engiserng | RWTH Aschen RWTH

S

i

Mobile Transporter: Van

Example from Alur: Principles of Cyber-Physical Systems

+ The transporter has position and the transported item
inits state:

componenty
Transporter

PhysPos pos

Optional<Something>s

«+ The behavior can be modeled by a hybrid automaton:

Receiving and storing the item
=

Something x

«data» Position dest

Transporter

Somethingy
=

Example: Motion of a Car

The component NetHeat is stateless. As an example of a stateful continuous-
time component, let us build a model of how the speed of a car changes as a result
of the force applied to it by the engine. For the purpose of designing a cruise
controller, it typically suffices to make a mumber of simplifying assumptions. In
particular, let us assume that the rotational inertia of the wheels is negligible
and that the friction resisting the motion is proportional to the car’s speed. The
forces acting on the car are shown in figure 6.3. If 2 denotes the position of
the car (measured with resp inertial reference) and F denotes the forcgy
applied to the car, then using the classical Newton's laws for motion, we can
capture the dynamics of the car by the differential equation:

to an in

F—ki=mi.

Here k is the coefficient of the frictional force, and m denotes the mass of
the car. The quantity & denotes the first-order time derivative of the signal
assigning values to the position variable x and thus captures the velocity of the
car. Similarly, # denotes the second-order derivative of this signal, that is, the
acceleration of the car.

——= Velocity v

—— Position

Farce F
Friction kv
Teal 7, < x < 2y
F SR

v=(F—kv)/m

Continuous-time Component Car

Modeling the Car Motion

Ready Driving ;
” <datas pr— posTiony
[sisAbsent] [22] > 0 A spos=pos Position pos |_PhysPos
Rip g:iems\ion o
[pos == dest] /y = s
Delivery of stored item
™ Sofaro Ergiraaing | RWTH Aschon RWTH

724 Softvars Engnoerng | RWTH Aschen

S

e
MBSE

17. Functions Modelling Mechanics
17.6. Principle Solutions Through Physical Effects

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

Energy
Material Cyber-
Physical
Data System

————]

SE:=-

———

Bridging the Methodical Gap: From Function to Component

Customer
Request

Rues and

Domain Independent
Functional Decomposition Data

Domain-Specific
Principle Solution

Model Based
Product Synthesis

728 Softvars Engnoerng | RWTH Aschen

121

26.12.2023

Physical Effects

+ Remember: Elementary functions describe a function
through their interface.

A physical effect implements the behavior of an
elementary function.

+ One elementary function can be realized by several
physical effects (and vice versa)

« The physical effect also provides aspects of the
system's geometry
Again there are many possible geometries for one effect

Elementary Functions

= B 0l EEE
S &4 H B B 9 B L]

Effect Catalogue (350 Effecs)

" H‘UU

.

Catalogues of Mechanical Designs

o Software Engincaring | RATH Aschen

SE.. ™M

+ Mechanical design catalogue provides
a set of elementary functions

~ amapping from elementary functions to physical effects
that are suited to realize the function

discussions on limitations, context constraints, etc.
geometry needed for the physical effect
+ Catalogues can be used to find a technical principle
for realizing an elementary function within a system

+ Composition allows to construct complex machinery
from the atomic solutions of a catalogue

Elementary Functions

Effect Catalogue (350 Effecs)

EER
EEEd]

=]

|

oy

3 Softvars Enginserng | RWTH Aschen

S e P

Functional Modeling of Principle Solutions

A principle solution realizes an elementary function
such that

its behavior is defined by a physical effect
~ parametrized by the active surface and material

« Active surface: Geometric interface (parameterized)
« Engineering Material: Materialistic parameters

« Example: Wheel realizing a converter
~ interface has of two contact points:
= In/outgoing for mechanical energy

~ Parameters: describe geometric properties:
« Distances m ry, mr; of contacts from rotation axis

Behavior described by the lever principle (physical effect)
« a.force *ry .force =, and
+ a.velocity = 5 « b.velocity

Principle Solution

mr2,

mrl
a.force
b.force
Mechanical- Mechanical-
Energya Energy b
-

Wheel(m r1, m r2) —

i

geometric properties

Physical Effects Realize the Behavior of Elementary Functions

29 Software Engiearing | RWTH Aachen

SE- ™M

+ Alever with distances ry, r; realizes the converter with n = ;—‘
2

+ Contact points are the active surfaces on which the modeled effect acts

Elementary Function

Principle Solution |

Mechanical- Mechanical- mr2
Energya Energyb l
5 9
mrl
Realizes aforce
bforce
Mechanical- Mechanical- Mechanical- Mechanical—
nergya Converter(n) Energyb Emermyn Wheel(m r1, m r2) = -
T bforce bvelocity = —> B2, b force « b. velocity e
n_+ a.force + a. velocity r1/r2 + a.force * a.velocity
0 Sotvare Engiosarng | RWTH Aschen

S = R

Example: Gear Unit as Composition of Wheels

« Agear unitis composed of multiple Wheels
(here: two)

The transmission defines a function that is the

composition of the functions of the two wheels:

« Functional model GearUnit(r1..r4)
I MechanicalEnergy a
— Out MechanicalEnergy b
Internal components:
- Wheel w1 = Wheel(r1,r2),
W2 = Wheel(r3,r4);
Composition:
- GearUnit(r1..r4)(a) = w2(wi(a))

* Result:
GearUnit(r1..r4) also realizes Converter(n)
for n=(r1*r3) / (r2*r4)

2L Wheel(m r1, r2) wi

b.force
Wheel w2
r4

Composed Geometry
m

contact point wi.b=w2.a
Wheel wi

“

mrl

aforce

GearUnit(r1..r4) ¢

Wheel(m 13, d) w2 -2

Considering Losses

= Software Enginearng | RWTH Aschen

SE. ™M

+ Awheel that considers losses has an additional
output channel:
Parameters: Distances mry, mr;
~ Interface with three contact points:
« In: Mechanical energy Force a
« Out: Mechanical energy Force b
+ Out: energy loss

+ The behavior is extended by an equation telling what
is produced on the loss-output
bf=af«
2
bfrbv=Dsafrav

“loss=b.frbv-afrav=afsavs (1 7:)

Principle Solution

mr2

1
mr aF

MechE MechEn b
echEna | WheelWithLoss ™~

™ mrm) —
Power loss

™ Softvars Engnoerng | RWTH Aschen

122

26.12.2023

Considering Losses: Friction

Refinement in Context

Principle Solution

« Include losses, e.g., by considering friction:

+ Wheel with friction is more precise than the wheel but
is formally not a refinement

mr2
+ Additional Parameters: friction.F « Add invariant & parameter F,,, to the Wheel- . :
— Friction coeffictients: Ry, R us R 1 3 Function: P max MechEna | WheelWithLoss MechEn b
Normal Force: N Fy 2 r(‘ . (mr1, mr2, NF,)
mrl - LTS Fmax
N aF . o .
« Behavior : a o afn=bfer A
— Force implies only dry friction: a.F iSs tp*Fy = - afrav=_sbfeby A
o
n - =bfsbv—afsav=afsavs(1-2
s bf=af+2n ST\ Refines WheelWithLoss loss=b.f+bv-afrav=afrave(1-7) refines
. loss = a. h ave(1-9) only in this case! MechEn b
MechEnal — WheelWithFriction [— « Now, WheelWithFriction refines WheelWithLoss* .
o) " (mrl,mr2, Rup, R ps, N Fr)— Refines the case a.f < Fpay — a.f <) — MechEn b
Force implies sliding friction: a.f « =-> pp Fy = MechEn loss Completes the specification by addlng a specmaahon of MechEnal WheelWithFriction
s bf=pg *Fy A the behavior in case a.f > pp * Fy (mrl,mr2, Rup, R ps, N Fy)l—
- loss=afrav—psxFysbv MechEn loss
™ Softrs Ergineaing | RWTH Azchen S RWTH 724 Sotvae Enginserng | RWTH Aschen S RWTH
Modeling Physical Effects: Electromagnetic Induction Modeling Physical Effects: Electromagnetic Induction Il
« Electromagnetic Induction is a physical effect | energy | | energy | | Py ‘ « By electromagnetic induction, a flowing current within a ‘ eenery> ‘ cenergy» Ma;‘:';:i‘st”iel d
i i MagneticField magnetic field induces a force N force Acurrent T fxdensity
. g . . rce A current T fluxdensity ms vel
Current-carrying wire within a Magnetic Field | mis velocity | V voltage | | Rodir ‘ - Model this physical effect as of two functions: s velocity V voltage R3dir

experiences a Force (Lorentz-Force):

Length is a geometric property - parameter of the

i | “component 1 “posiions
function Wire pos |_PhysPos3DOrientation

Wire has a physical position within the magnetic field
Orientation of the wire yields an angle ¢ to the magnetic
field

Defines e.g. the physical effect used in electric
engines

R3p
R® orientation
mis velocity

ms
MagneticField b ﬁ
‘ [wirew

- Wire: “<componenty 1 “positon
+ Parameter: Length s of the wire, flux density of the magnetic Wire os |_PhysPos3DOrientation
field g
R'p

+ Interface with three contact points
- Incoming electrical energy:
- Incoming magnetic flux:
- Outgoing mechanical energy:

R* orientation
ms velocity

ElectricalEnergy a
MagneticField b
MechanicalEnergy ¢

Electromagneticinduction (T B, m s)
+ Behavior, with £ (b.dir,w. orientation) =

- cforce = s = b. fluxdensity + a.current cos(p) + sin(p)

- cvelocity = s » b. fluxdensity = a.voltage * cos() * sin(¢)

Magnet(8) pm

MagneticField b

H } - Permanent magnet is a magnetic flux-source that supplies a Electrical{ Mechanical-
* Abstracts from ElectricalEnergy a constant magnetic flux Energy a Wire(s)w Energyc
~ energy losses, e.g. heat f Mechanical- . Par‘ame‘t'er Magnetic flux supplied (depends, among others on
- . - - . . rad ¢ material
tilting of the wire loop in the magnetic field w.pos.orientation Energy ¢ . Behavior: b. fluxdensity = B -
stracts from energy losses

s Sotwars Engneadng | RWTH Azchen S RWTH 0 Sotvare Engiosarng | RWTH Aschen S RWTH
El ic Induction a Transformer Literature
« Iff 4 (b.dir,i.dir) = /2 holds, Electr Principle Solution « [KK98] Koller, R., Kastrup, N. Prinziplé. zur Produkte. Springer, 1998

realizes an ElectricalEngine with n = (s * B)z

[Elementary Function

EIEn a MechEnb

Electrical- [Mechanical-
Energya | TransEMToMech(n) Energyb

==+ b.force « b.velocity
= n+a.voltage »a.current

s,

(TB)b 1
I T)
EIEn a MechEn ¢

Electromagneticinduction (T B, m s)

Magnet(8) pm
MagneticField b
Electrical{
E
e Wire(s) w

Mechanical-

Energy

[BCF+14] Legat, P, Mund, J., Campetelli, A., Hackenberg G., Folmer, J., Schiitz, D., Broy, M., Vogel-Heuser,
B. (2014) Interface Behavior Modeling for. ion of Industrial ion Systems’ Functional
Conformance. at - Automatisierungstechnik, 62(11), 815-825.

[JTO1] Jany, P., Thieleke, G. (2001). Thermodynamik fiir Ingenieure. Vieweg + Teubner.

[Wei09] WeiRberger, W. (2009). Elektrotechnik fiir Ingenieure. Vieweg + Teubner.

[DKV10] Dobrinski, P., Krakau, G., Vogel, A. (2010) Physik fiir Ingenieure. Vieweg + Teubner.

[FG13] Feldhusen, J.; Grote, K.-H. (Hrsg:): Pahl/Beitz k und

erfolgreicher Produk[entwtcklung (2013) 8. Aufl., Springer-Vieweg- Verlag, Wiesbaden

[Bru96] Bruton, Dan. Approximate RGB values for Visible Wavelengths (1996). Internet:
http://www.physics.sfasu.edu/astro/colc html.

+ [HMS+07] Hutcheson, R., Mcadams, D., Stone, R., Tumer, |. (2007). Function-based systems engineering
(FUSE).

7 Software Enginoaring | RWTH Aachen

78 Softvars Engnoerng | RWTH Aschen S RWTH

123

MBSE

18. Digital Twins

Software Engineering

RWTH Aachen Further Reading:

http://www.se-rwth.de/

18.1. Foundations Energy
Material Cyber-
Physical
Syste
Prof. Dr. Bernhard Rumpe Data____ | o¥stem B

www.se-rwth.de/essay/Digital-Twin-Definition/

26.12.2023

History of Digital Twins

+ Goal: Increase system availability and performance of systems by
~ Analyzing physical processes and judging, predicting and optimizing virtually
~ Providing data from physical system to complete simulations, validate settings and
dynamically adjust
~ Analyzing results and feeding back to respond to the changes

Term “twin” originates from NASA: Build a physical copy of aircrafts to simulate aWs

and test control scenarios

Today: Digital Twins normally are virtual representations of physical things:
~ digital models about the physical thing
~ data about/of the physical twin

Realizing new technologies requires close collaboration of experts and
connecting various models

~ Real-time processing
~ History based
~ Storage, e.g., in cloud

The mean temperature at the cavity over
the last 10 minutes was 146.6°C. This
value is computed with algorithm

Reduced data set may be sufficient to gain insight | Meanvalue()and a sampling rate of 10s.
about the system's state

Data quality depends on sensor, sampling rate
Metadata missing (units, date of measurement)

Cavity Pressure
Cavity Temperature

+ Sensors over time create data sets, that may be:

~ Very detailed, or

~ Time reduced

~ Quantitatively reduced

~ Preprocessed

- Qualitatively reduced (black and white instead of
colored picture)

~ Enriched with metadata

Drying Duration

snippet for QA of
latest part

Material Temperature
Volume

3 Software Enginoaring | RWTH Aachen S

S RWTH 740 Softers Ergineerg | RWTH Aachen S ‘ RWTH
Digital Twin Definition, V2.1 Digital Shadows as Part of the Digital Twin
A Digital Twin of a system consists of A Digital Twin of a system consists of
+ a set of models of the system and + aset of models of the system and
+ a set of digital shadows, both of which are purposefully updated on a regular basis, and + aset of digital shadows, both of which are purposefully updated on a regular basis, and
+ provides a set of services to use both purposefully with respect to the original system. + provides a set of services to use both purposefully with respect to the original system.
The digital twin interacts with the original system by The digital twin interacts with the original system by
+ providing useful information about the system'’s context and « providing useful information about the system’s context and
+ sending it control commands. « sending it control commands.
Dat * Physical world contains observable elements that
ata can be monitored, sensed, and may be actuated and
controlled
« Data Collection & Device Control interacts with the Physca —
physical world to observe and influence its behavior g Data7Infomation syser
Control, may embody pure software
condensed « Creates digital shadows based on data about the software too ‘
Physical i i physical world and queries/specifications from the ' T
ysical digital twin applications the complete system
system Data / Information system - Further Reading: www.se-rwth.de/essay/Digital-Twin-Definition/
i Software Engineerng | RWTH Aschen RWTH 72 Sofvars Engosrrg | RWTH Aschan RWTH
SE-- SE--
Modern Sy are i by Many Digital Shadows
« Large amount of data Relevant image

aggregation and abstraction collected for a specific purpose with
respect to an original system.

ADigital Shadow is a set of contextual data traces and their ‘

Use-case.specific digital shadows

—

Data acquistion and - Models

A digital shadow is
+ apassive set of data
« information source about a system's state and history
« is collected, filtered and reduced for its dedicated purpose in
varying forms of abstractions
« apurely digital artifact
+ produced by a (physical) system.

A system can have many different digital shadows describing a - i%@
variety of different aspects of the system in different detail and at | Digtal World
different times.
Physical Word

Shadow may contain information about production systems,
production processes, products, and human operations FELE

44 Software Enginoaring | RWTH Aachen S

124

A Digital Shadow Reference Model

describes the CPS Concept model

value at one point
in time

DataPoint

data source for the
Digital Shadow

describes.

- ‘ \
o e |

[smton | [esswrent | [pcessng |

AdditionalMetadata

any object that Filtering ‘ regation | | " ‘
fulfills a purpose and Aggregati Precision - | Confidentiality
is part of the system
‘ S S RWTH

26.12.2023

MBSE

18. Digital Twins
18.2. Typical Use Cases Energy
Material Cyber-
Physical
Prof. Dr. Bernhard Rumpe Data_ _ __,| System e
Software Engineering
RWTH Aachen

Further Reading:
www.se-rwth.de/essay/Digital-Twin-Definition/

S it

http://www.se-rwth.de/
RWTH

and digital twins

The Internet of Production develop: hniq for digital

Data and Models must become available for cross domain use

« The central scientific approach of the loP are Digital
The theme of the Internet of Production Shadows as mediators between the vast amounts of
heterogeneous data and detailed production

Providing semantically engineering models, meaning:
adequate and context NE . "
aware data from ‘

production, development
and usage in industry...

and persistent

datasets
— Generated by deliberate selection, cleaning, semantic
- L e integration and pre-analysis
A
B 2] F — Used for reporting, diagnosis, prediction and
recommendation in domain-specific real-time
« The Internet of Production is a huge project:
— 87,5 researchers (up to 2x7 years)
~ 13 research managers

... not only one-time, but
rather continuously and
highly iterative in real

Production
Environment

g O 41% 4

User Environment
$is: A\

b

time with the adequate ~ 4 support positions - =
level of granularity... Data ol
~ Overall ca. 200 employees ., o Cata (from IOP)
et ‘ Sofaro Ergiraaing | RWTH Aschon INTERNET OF | RWTH. s Sotvars Engranin | RTH Aachon INTERNET OF | RWTH
PRODUCTION PRODUCTION
Conceptual Model for Digital Shadows & Example in the IOP (ssp+21] The SE-Vision within the loP
IMES Physical World Digital World
orEC
Part-ID, IMM-ID. [Production Scheduling System] Production Our aim
Human Injection Molding Machine teaet o™ oTEB Efficient development of digital twin services
JobRejectionRate MES Release on Injection Minimize Rejection e e el based on digital shadows
Molding Machine: IMM-8 Rate for Part X . orRdons i
QualityClassification — actory I Provide Engineering Tools & Methods
| Tool 1: Digital Shadow Type Creator

Processing
JobRejectionRate

Rejection Rate

Rejection Rate o
of Single Job

of Single Job

Record of single Job.

generate DS-Types which can be used during
L= N e
PLEZS + define relevant models, data and meta-data
+ select data sources ffom the data lake
+ based on MontiGem (GUI)

Shopfloor DT Shopfioor-A ors8

it BL) /@.«@\?\

Tool 2: Low Code DT Platform

STuc + create configurable DTs
Machine Digital Twin
Machine-A DTM-B w + senices for data extraction from engineering models
L definition of meta-data and conneciion to onologies
e + API's to other services, e.g. Al algorithms
=== + integrated process mining senices

+ based on MontiGem (GUI)

| PartiD_| IMM-ID
1 IMV-A 19
2) 2
fvar Enginserng | RWTH Aachen 3 M-8 1 7 cfvaro Engnsoring | RWTH Axchen
T Softaro Enginorig | RWTH At - S RWTH 50 Softaro Engooarng | RWTH S __ | RWIH
0 MM-A 17 . =

125

26.12.2023

Use Case (Szenario): Factory for the production of metal blanks

Production of metal blanks
~ Producing factory ~5
~ Blanks in various shapes
= with threaded hole
= with round bores
~ Deformed
— Come in different colors
~ Can be heated for further processing steps

- Different views and roles
— Users can view goods, place orders, view the status of
orders.
- itoring for ing: material stock,
demand prediction
~ Monitoring of the factory: capacity utilization, status,
errors

* And then AR

1 Software Engincaring | RATH Aschen

Fischertechnik workpieces and functions

' T
\
A

workpieces

Thread
Round, lling
drilli

~
¢ Deformation
N
Workpieces are delivered X
Storing
counted and stored here (Material
and
Product)
—
‘ s | s S o—
e

Kinds of Digital Shadows

- Different physical entities, very different, purpose
specific kinds of data models
- e.g., BIM, Google Earth, CAD, Conceptual Models

!

7 ‘ Software Enginearing | RATH Aschen

Various Purposes of Digital Twins in the Application Domains

* Automotive:
~ Predicting driving behavior

+ Health: monitoring, diagnostics, and prognostics
~ Simulators for medical training and education

~ Monitoring for predictive maintenance
+ Aerospace: virtual product development and flight test scenarios
+ Construction and Energy Efficiency:

~ Monitoring structural health of sensor modules

— Process automation with intelligent sensors and methods for calibration

+ Games, Media, and Entertainment:
~ Visual and physical motion sensing for three-dimensional motion capture

+ Manufacturing: Automating production and reacting if necessary

754 Softvars Engnoerng | RWTH Aschen

S et

Digital Twin of SE

« Chair’s offices can be visited virtually

« Lights, a metal ring and fans are synchronized
between the real world and the digital twin

« Technologies: Meta Quest 2&3, Unreal Engine,
MQTT, Arduino/Raspberry Pi

loT MQTT VR
Device Broker /Unreal

755 Software Enginoaring | RWTH Aachen

S

MBSE

18. Digital Twins
18.3. Services, Cockpits

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

Energy
Material Cyber-
Physical
Data System
Ep— -

Further Reading:
www.se-rwth.de/essay/Digital-Twin-Definition/

SE=

126

26.12.2023

Purposeful Services are Part of a Digital Twin

A Digital Twin of a system consists of

+ a set of models of the system and

+ a set of digital shadows, both of which are purposefully updated on a regular basis, and
+ provides a set of services to use both purposefully with respect to the original system.
The digital twin interacts with the original system by

« providing useful information about the system’s context and

« sending it control commands.

Digital Twin Applications & Services take actions based on
one or more situations that they sense in the environment

« User can access Digital Twin Applications & Services through
appropriate interfaces

Digital Twin has (some) strategic control over his physical twin
~ usually high-level, the real-time control strategies are embedded in
the CPS

5 Software Engincaring | RATH Aschen S

Digital Twin vs. Digital Shadow vs. Model

A Digital Twin of a system consists of

+ a set of models of the system and

+ a set of digital shadows, both of which are purposefully updated on a regular basis, and
+ provides a set of services to use both purposefully with respect to the original system.
The digital twin interacts with the original system by

+ providing useful information about the system'’s context and

+ sending it control commands.

ADigital Shadow is a set of contextual data traces and a . H‘

their aggregation and abstraction collected concerning =
a system for a specific purpose with respect to the
original system.

Terms share some characteristics, but:
« Twin is an active software system (through services)

+ Model prescribes the system under development

A model is essentially a reduced or abstracted "
and at operation

representation of the original system in terms of
measure, precision and functionality. (Stachowiak 1973)

« Shadow is passive data produced during operation

758 Softvars Enginserng | RWTH Aschen

Cyber-Physical Systems and Digital Twins

Cyber-physical systems (CPS) are engineered systems
where functionalities are emerging from the networked
interaction of physical and computational processes.
[BDS19]

User
Human Device Other System Digital Twin

« Literature currently is unclear, whether a digital twin is part
of the CPS o beneath to it E—
. Applications & Servi
* Auseful viewpoint: ‘ Model Analyics ”w"' °,:';m, ;:e::s Predictive ‘

Processor Maintenance

Data Colection & Device Control]

B &

Personnel Material Equipment Process Environment

The overall system contains the physical part, sensors,
actuators the embedded controls, data collection, services ‘

and user interface

F

The overall system is engineered in an integrated project ‘
considering physical and IT part in parallel

Physical World

Digital Twin builds a logical entity, but its software B, i
components may be distributed =

50 Softare Engineering | RWTH Aachen

SE.|™M

Cyber-Physical Systems and Digital Twins

Cyber-physical systems (CPS) are engineered systems
where functionalities are emerging from the networked System
interaction of physical and computational processes.
[BDS19]

«+ Literature currently is unclear, whether a digital twin is part
of the CPS or beneath to it

A useful viewpoint:

The overall system contains the physical part, sensors,
actuators the embedded controls, data collection, services
and user interface

The overall system is engineered in an integrated project
considering physical and IT part in parallel

« Digital Twin builds a logical entity, but its software
components may be distributed

750 Softvars Engnoerng | RWTH Aschen S
froey

Digital Twins Support all Lifecycle Phases of a System

+ Depending on the lifecycle phase a Digital Twin offers different services to
control/adapt/represent the physical system

Concept

+ During Concept and Development, a Digital Twin acts as integrated
collection of development artefacts and/or simulates the behavior of a CPS
~ Supports communication engineers and designers while working together

across departmental boundaries
~ Evaluates product variants to support design decisions

+ During Production, a Digital Twin
— Supervisee the production process, e.g., individual deviations from norm m
that require special treatment
— Tracee the applied materials, components, processing steps

Retirement

Development

Production

Utilization

During Utilization and Support a Digital Twin

~ Provides information on system state, history and usage
~ Enables optimization of a machine during operation

~ Facilitates the improvement of future products

— Enables predictive maintenance

System Lifecycle from ISO/IEC 15288
(Systems Engineering standard)

781 Software Enginoaring | RWTH Aachen

SE ™M

P
MBSE

18. Digital Twins
18.4. Developing a Digital Twin Energy
Material Cyber-
Physical
Prof. Dr. Bernhard Rumpe Data _ System

Software Engineering

RWTH Aachen Further Reading:

www.se-rwth.de/essay/Digital-Twin-Definition/

SE =

http://www.se-rwth.de/
RWTH

26.12.2023

Development Process of CPS and Digital Twins

« Services of a Digital Twin are intensively connected to the CPS
~ Integrated parallel development
~ NOT only a spin-off product of the development of the physical system
— may be configurable, can be parameterized or calibrated
~ new services may be coming over time

« Adaptivity through explicit models at runtime:
1. Autonomous self-adaptation, e.g. induced by changes of the context,
optimizations identified for example through continuous measurements or
by a slow degradation of the system itself

2. The user wishes to adapt the system behavior

3. The manufacturer adapts the system behavior according to identified
optimizations, fixing of bugs and failures, or upgrade of functionality

« Challenge:
Development cycles/methods for CPS and IT differ radically

shared models
as common base

Composition of Digital Twins

- Factory decomposed along two dimensions

- ~ DT's are composed
R [FactoyTwin | - - Physical components are composed to a system
|| Qualty | Assembly | screwarver i ~ Butideally: Physical component + its twin
N Assrumce . Twin k. Twin . is developed / purchased / shipped together
I - n [
. ™ - System
1
| Digital Twin
Pyt NP e

e Softers Engnserng | RWTH Azchen S RWTH 764 Sofvars Engrerng | RWTH Aschen S RWTH
The fi ion paradi provides the hodol I and or | for smart
digital twins services. Model-Driven Digital Twin Creation
streams: input system boundary streams: output « Cyber-physical systems are complex E’
« Asystem defines a cyber-physical function ~ Consist of multiple components Engineering Models ‘
— physical and computational structure Energy ~ Offer different functionalities cD
~ performs data, energetic and physical transformations vateriar | \ B‘BDS CAD
— and is connected to its environment through its interface + Reuse engineering models that are created during system design
for systematic efficient definition of larger parts of a Digital Twin
« Functional modelling paradigm allows for) 83
~ Clear definition of component interfaces / behavior * Generate a Digital Shadow Caster that accesses the CPS and Model Extractor and
~ Data, energy, and material streams model interactions of displays potentially interesting Digital Shadows from Engineering Generator G
components Models Generats |
~ Decomposition
~ Composition from atomic Principle Solution Models * Exract structural information about the CPS T
— Abstraction in modelling ~ How is the CPS composed Py
— Basis for simulation « Spatial Information -
— Where are the CPS and its intemal components located j——
Functional system architecture + Expected behavior Representation
— How should the system react to a specific situation .
The i igm specifies the { ialistic and behavior of a CPS within a ~ Derive, when the system does not behave as intended de
system i with a i sound i
= e
Data Lake

« Repository of data stored in its natural/raw format, usually object blobs or files
~ Include structured data from relational databases (rows and columns)
— Semi-structured data (CSV, logs, XML, JSON)
~ Unstructured data (emails, documents, PDFs)
~ Binary data (images, audio, video)

« Data Lake stores all data - regardless of relevance, structure and purpose

« Data stored independently of source and structure
~ Remain in original form and only prepared when needed
~ "Schema on Read"-Principle: data is only structured when it is read

« Data Lake e.g., based on Hadoop
~ Distributes the storage and computation of the data over many nodes of a cluster
~ Data in large quantities can be processed quickly

O B

Machine
Learning

Analytics

\‘\D-a‘ tra 7L7i-|<{! /j

On-premises
Data Movemen

t

»

Real-time Data
lovement

Model-Driven Digital Twin Architecture

i Software Enginearng | RWTH Aschen,

S

That realizes a MAPE-K self-adaptive loop over the CPPS
Digital twin: [models + contextual data + services used purposefully w.r.t the[physical system. |

* MontiArc reference
architecture
* Uses data lake and asset
+ Creates digital shadows @
« Evaluates state and acts k

Donanspectc
« trigger shadow creation EventModele
* connect to data lake

« case-based reasoning @("—’f’-
« connect to CPS =
sreareg
Scnama s

- Services: Representation,
monitoring, optimization

78 Softvars Engnoerng | RWTH Aschen S

128

26.12.2023

Creating Digital Twin Cockpits with MontiGem pwr+20,

Process Prediction with Digital Twins (srk21

Generation Process

Generating digital twin cockpits from models
with the generator framework MontiGem

MontiGem
GENERATORS

« Successfully applied to research and
real-life projects
- MaCoCo, Engineering Wind Turbines, InviDas
see: hifps: - Digital Twin Cockpit
~ Digital twin cockpit: Injection Molding (01120

+ Components of the digital twin cockpit application
— Database, backend and frontend of a web
application, communication infrastructure

« Used models, e.g.,

~ Domain model: data structure
~ GUImodels: user interfaces
~ Data models: representation of parts of data in GUIs

T = Bt

« Aim: improve the operation

of digital twins

~ process discovery from
event logs and

~ process prediction from
process models at runtime

+ Models at designtime

\opl del:
©.g. domain model, GUI

odels,
~ Application independent

Digital Twin

Process-Aware Digital Twin Cockpit

(visus! Anslytics, Frontend

Business Logics)

models, e.q., architecture,

basic DS and process

3 party applications
S e

structure, ‘

* Models at runtime
- process models, goals,
actions,

Presentation in Oct. 21 at MODELS@run.time Workshop

van der Aaist, stvén Koren, Merih Seran Uysal, Tobias B

~ OCL models: validation of data input Digital Twin ey
User interfaces
MR +20] M. Dabor, . Mchasl, B. Rumpe, . Varga, A Wortmarn: Towards a Mode Driven Archiectursfor neractive Diial Twn Cockps. ER20
e Sofre Engineting | RWTH Aschen S RWTH

i) Softare Engineering | RUWTH Aachon

S o

Low-Code Platforms for Model-Driven Digital Twins mw21

« Digital twins configured and operated by
shop-floor experts (rarely professional
software engineers)

MontiGem

+ 2-step generation process
~ We generate the low-code platform
~ Shop-floor experts configure a digital twin via
the low-code platform and
~ generale one or more digital twins

* Enablers

~ model-driven digital twin architecture and
toolchain
model-driven toolchain for generating
information systems
reuseable language components, services
and models

Diital Twin

Presentation today at APMS conference with Aocroas
m Softers Engnseng | RWTH Aschen S RWTH
=

Model-Driven Digital Shadow Creation
« Cyber-physical systems are complex E’
~ Consist of multiple components Engineering Models |
— Offer different functionalities CD
BDD cAD
+ Reuse engineering models that are created during system design 18D
for systematic efficient definition of larger parts of a Digital Twin
+ Generate a Digital Shadow Caster that accesses the CPS and Model Extractor and g—@ G3£D
displays potentially interesting Digital Shadows from Engineering Generator wo‘i’ﬂs’:‘u ctures
Models Generats |
« Extract structural information about the CPS T
— How is the CPS composed X
« Spatial Information -
— Where are the CPS and its internal components located S
+ Expected behavior Representation
— How should the system react to a specific situation v
~ Derive, when the system does not behave as intended de
™ Sofvars Engosrrg | RWTH Aschan S RWTH

AUTOtech.agil Project: Model-Driven Digital Twin for Vehicle Diagnostics

AUTOtech.agil Project: Model-Driven Digital Twin for Vehicle Diagnostics -2

N + Goal: shaping future
B “Automated software and E/E architecture
=S Driving ~ Layers controlled by the
£ Service Orchestrator o
2 Remote
: LDy
2 2 oo
5 25
g [Function 1] [Function 2] [Function 3] %}Mm i “\ wgm
K {

Orchestrator . X . § .

Service 4. Service 5 * Our job: Model-driven generation of diagnostic DTs
2 '—’|
8
H | S) « Four layers
@ | | senicel || Senice2 || Senice3 | — The Driving Mode layer manages active modes
~ The Functions layer organizes vehicle functions
= « vehicle functions are functionalities dependent on
g [B] { Eeuz J [LT J multiple different services, e.g., door control
£ — The Service layer: active services + connections
~ The Physical layer maps services to ECUs

+ Our job: Model-driven generation of diagnostic DTs
~ services, SOVD-compliant interfaces,
data containers for digital shadows

* Architecture models vehicle functions and their
structure
« to simulate the expected behavior
« to compare of real vs expected behavior

+ CDs + OCL as model basis
« function classes model input/output data
(storage logs of Digital Shadows)
« kinds of software errors
« predefined error-kinds specific diagnosis queries
« Pre-processing data in the vehicle services

— mobile data-plan, because constraints on transmission
~ aggregation, compression

Diagnostic | sowt
Device Cient

Diagnosis Interface

v
Gateway.
p{ sovo.cien

contral
commands

data flow

i ‘ Software Enginearng | RWTH Aschen

74 Softvars Engnoerng | RWTH Aschen

SE =

129

26.12.2023

« Adigital twin can

— Optimize performance of products in the field

— Give strategic control to the CPS

— ldentify correlations between scenarios, learn and
improve during their application

Model
A r’n\tme/ of the “thing"

— Boost production efficiency & &L Uniqueness 2% control
Each physical thing has at “Twins can control the
ast one unique twin thing” they represent

g Data Monitor
— Enable more accurate predictions and what if e.g. identity, status, context, L Query state, obtain
scenarios from usage notifications
. y # Simulation @ Analytics
— Process and advise operators in complex scenarios Simullte the real-world "thing” Rules, predictions, algorithms,

level analyses and

The digital twin enhances engineering models with data and synthesizes insights from system

System Level Analyses & Optimization
Machine learning and reasoning automate tasks
e.g., verification and design optimization

Functional Systems Engineering

unifies system functions and physical parts in a
model that serves as digital replica of the entire
system and structures engineering models by the
innovation driver — the function

Knowledge Management
Artificial Intelligence extracts knowledge from data
and propagates it as necessary

Data acquisition & propagation

Digital Twin
Digital Twin Cockpit: Smart Applications & Services

Predicive
Waintenance

Reallime Smart Saniy
Gonirol Anaiyics Ghecks

Functional Model of the System

Data Collection & Device Control

Big Data empirical
obtained from live-data

i o)

e
MBSE

19. Advanced Methods (i.e. Methods, Part2)
19.1. Evolution in the Brownfield

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

Personnel Material Process Equipment Environment |
75 Software Engineering | RWTH Aachen S m 76 ‘Software Engineering | RWTH Aachen S 'mm
Some Digital Twin Use Cases
Design
Anhang - g T

T \ o

T Operation ir
';” R ‘ " Simulation Feeding puiti- lasting

g Optimization fime perspective
5 Injection Molding
[= =
Simulation MUIFAdelty Automation
Industrial
RobotArm "
Teaching Electric Mining g
1 Vehicles,
Architecture
Fischertechnik Facton
777 Software Engineering | RWTH Aachen S RWTH 78 ‘ ‘Software Engineering | RWTH Aachen S RWTH
= o
Problem: Brownfield vs. Greenfield
. \;;g/éoedszlésRUP. etc. are greenfield development Y] Anaiysis
= They assume a fresh project every time specification

~ They are good for understanding the overall organization,
but ignore existing, reusable assets.

Brownfield project relies on

— Already existing product from the last version

~ Existing models and their relations of al sorts

~ Knowledge about problems, improvable functions, ...
~ Changed requirements

Existing project is legacy as well as a good starting
point

Brownfield also happens when:
~ Fixing bugs
~ Quickly adding a new feature (even after shipping ...)

Implementation
/ Construction

From greenfield
process

to evolution of its
artefacts:

a “cabinet” full of
artifacts with relations
of all kinds

70 Softvars Engnoerng | RWTH Aschen

SE .

130

26.12.2023

Id of Existing Artefacts Wind Turbine
Version V1 V2 V3
+ Brownfield: Analysis| + MBSE - Parameter triggered processes by global transparent modelling of the entire design process
~ We evolve the cabinet of artefacts in parallel, v —»!—I
but not top-down - = .
- Bug fixing > implementation artefacts Design !H\\ !T | f Product
- Redesign - Architecture / Design 2 Pt 2= Y p
. Requrements change > Analysis go:ﬁs_ ! /) Model-based product architecture N /
uction
)) o . ino ICIN 111 m Requirements Pre-design ;:; Advanced expert {
« Tracing the relations between artifacts is essential Testing m B8] rivetrain design (CAx) ;
— Automatic consistency checking :; t: ? 7 f
~ Automatic change propagation (upward and downward) DIN L] LJ
1 ¢ p
“cabinet” full of artifacts with relations of all KsSsorr | 1 — ‘H!
+ Even better: kinds is evolved, ideally while keeping all - S
~ Automated generation reduces the set of artifacts to evolve artefacts consistent to each other “
— Automate build with a build script [il/[o]
i Transparent

~ Automate testing (e.g., junit-like) and simulation (e.g., simunit)
’ Parameter Space

1 Software Engincaring | RATH Aschen RWTH 2 Softare Engineering | RUWTH Aachon center RWTH
s SysTems e
= ENGINEERING o

4
SN

Product-

Product Line Development: Separate Domain and Application Engineering
Domain
Requirements

boman Li bomain Li boman LJ

Elicitation Design Implementation Test
s ul Eun s

Domain Artefacts incl. Variability Modell

— T

e
MBSE

Domain Engineering

Requirements Architecture Components Tests
19. Advanced Methods T 1 T -
19.2. Variability in Product Lines J L s 5

AN
RAPE\I::‘::B Application Application Application
E\cw‘a‘lon Design Implementation Test
L1 1 O

Application n — Artefacts in Single Variant Version
Application 1 - Artefacts in Single Variant Version

- Sk | e
Requirements Architecture Components

Softere Engineering | RWTH Aachen S
e

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

o
£
@
o)
<
=]
=
i
c
S
®
S
<

http://www.se-rwth.de/

Description of Variability through Feature Diagrams Features may Select Model Elements in Other Models

UML Component Diagram

Features in the FD
optional correspond to model
elements in other models

Afeature is a piece of functionality tangible by a
customer

Lock Control

A feature diagram describes the set of valid
configurations

~ Box = feature

~ Dependencies of form and, or, xor

— Additionally: B requires D, B excludes E

150% models may contain
all features, and a subset is Authentication Bl

alternative Electronic
features (xor) then selected Manager O

* Problems:
~ 150% models may not be
valid models (e.g. alteatives
cannot be expressed, efc.)

- Lock
Integrated 150% model =] =] Authentication

Electronic Manual
belongs to a new language Door Lock Door Lock

« Afeature configuration is then a subset, e.g.
~ Tacho, Klimatronic, Driver Seat, Navigation
— It describes possible configurations to ship a product

| requires

FD's usually result from a domain analysis

75 Software Enginearng | RWTH Aschen S RWTH 756 Softvars Engnoerng | RWTH Aschen S

=

=

131

26.12.2023

Variability in Component Definitions

« Architecture model with optional components,
ports, and connections

AdaptiveCruiseCntrl

« Selected features control if optional components
are instantiated

+ A concrete architecture variant depends on the
selected features and their mapping to optional
components

s

L
Dashed components:

Automaton Example with 3 Features

+ Base language: Automaton

+ Color (and numbering) demonstrate
the three features
~ (color is not part of automata)

« Variation points for automata can be
the language constructs:
~ State (can be added)
~ Transition (can be added, redirected)
~ Alternate signals
— Initial / final state marker

+ Some states / transitions belong to the core model
(black), others to specific features

automaton describes the core
functionality

« Typical working engine with three states,
but unable to cope with errors

3 Software Erginearng | RWTH Aschen, S RWTH

=

|camera| [Radar |[LIDAR | [EACC | [Breaking exist only if feature is selected
m Sofre Engineting | RWTH Aschen S RWTH 7 Sotvae Enginserng | RWTH Aschen S RWTH
== =
Automaton Example: No Feature Selected A 2 Features Sel d
« If no features are selected, a minimal turnOn + An extractor transforms the product line turnOn

model into a base model

~ Based on a feature configuration
— Calculating minimal complete set of features
(ErrorRecovery requires ErrorHandling)

~ Deletes non-selected features
— And keeps model elements of selected
features

* The automaton model can now be further
used for the defined variant of the product
line.

Failure

750 Softvars Engnoerng | RWTH Aschen S

e
MBSE

19. Advanced Methods
19.3. Artefacts and Automation

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

Automation Of Development Steps

+ “Automation has proven to be the single most effective means of making dramatic improvements in both
productivity and product quality”
Bran Selic, 2019
« Automating :
~ Generation, synthesis

- Ci derivation of or more detailed forms of models

« Transformation
= Correctness by construction

~ Analysis
« Consi checking, 1l rules, etc.
- Applicability of transformations
= Automatic verification

~ Testing

— Simulation
= As a technique for testing and dynamic analysis

752 Softvars Engnoerng | RWTH Aschen S
o

132

26.12.2023

Artefact View: Many Artefacts and Many Types of Artefacts

An artifact is an individually stored and
referenceable unit containing relevant information
in a software or systems development project.

« Examples:

Requirement document,
~ SysML model, UML, model, config file, build script,
~ Variant list, task,

CAX file, decision description,
~ Code, prototype,

Test, test result, ...

* Roughly:
Each file is an artefact,
— But data bases and archives also contain artefacts

Definition
Project

L

Example 2: RUP Workflow with Activities and Artifacts Rep. |
e ror T
o f ™
P Workflow Details /
Roles, Activities
preiect = B and their Artifacts

%

in the Architectural
Design Workflow

=
Analysis
Model

m Softwars Engincaring | RATH Aschen

/' Review the
Design D
) Existing Design
Elements Architecture.
Reviewer
o=

Artefacts and Their Relations

Artefact Model

are the basic constituents for the development
process

relates to

* Various kinds of relations exist:
Derived from
— Refinement of
Compiled to
— Replacement of
Trace

* Observations:
Understanding artefacts and relations is key
for assessing a development project
Artefact model similar to PLM for the development

(Visualizations of retrieved artifact models)

More Observations:

« Various forms of relations exist: They depend on the models used.

+ An artefact model captures the kinds of artefacts and kinds of relations

+ Tooling allows to view, select, filter and also to check architectural constraints, etc.

o] =T

structures

Project analyzer

795 Softer Engisring | RITH Aschen S RWTH 76 Softer Engiesting | RWTH Aschen S RWTH
Two Classes of Artefact Relations Degrees of Automation of Artefact Relations
+ Many kinds of relations, but: they can be cklassified c « For the derivation relations, we see several degrees of automation:
« inonly two forms of relations derived
from « Bis manually derived from A P — > B
— “BusesA’, Costly labor has been spent by a developer
e.g. import in Java (also called “dependency”), B - A
“B is derived from C", « Bis generated fully automatically from A A—-B
e.g. class files are derived from Java source ~ Cloud / computer power is cheap: No cost at all
+ If*B uses A" then both artefacts A, B are relevant for . f ‘B is derived from C", then B contains (partially) the
the subsequent activities. same information from C. B may have more « Mixtures with variable degrees of automation are possible:
* They contain different pieces of information, but B information or a different representation. (1) Bis manually derived from A, but inconsistencies can be detected if A or B change.
uses symbols that have been introduced in A. « C could be thrown away (or ignored), if all information (2) a trace can be established allowing to constructively propagate changes on Ato B.
- Bis syntactically coupled to A. was derived to B. ~ (3) ... and also to propagate changes backward from B to A)
use of B enforces use of A, . . ; (4) an explicit transformation has been scripted that allows to redo the derivation of B from A
g C was a result of an “earlier” activity than B. . ")
~ change of Amay lead to a change in B. + But: Trace and transformation are also artifacts!
« Usage may be cyclic « Derivation is acyclic (a directed acyclic graph)
o Softer Enginoaring | RWTHAachen S RWTH o8 Softar Enginoaring | RNTHAschen S RWTH

133

26.12.2023

e
MBSE

19. Advanced Methods
19.4. Some Industrial Insights

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

=

Artifacts Evolution Over Time Artifacts Over Time: Development
File based (changes over time): . Developer thinking time:
« Artifacts evolve artifacts * Artifacts are manually derived from others Creating and changing artefacts
" ~ Atime consuming, human activity -----
« This is also a derivation relation, Al A1 A2 A3 | [|
usually a manual derivation B [— » B2 B3 « Some artifacts are automatically generated B B2 \
or compiled _— \
- Artifact A exists in versions c ¢ c2 time ~ a quick buld process | that can be repeated handwritten | A X
A1,A2 A3, ... anytime artifacts C
. Commit based: B O AU \ K\ """"
+ Only the current version artifacts « Adevelopment process takes time: automated B Bo
is relevant Al At A2 . . 5 . ~ makro time scale (e.g. a year) generated,
e S Ac 1
+ Typical version controls: B = — > B2 3 ‘T + Manual derivation is slow and extensive: co??”id \ ™
~ git, svn I ~ development step: micro time scale (e.g. aday) ~ 2rtiacts Ao Co CO fime
C 1 2 time — — —
commit# 4 T T T T T 1 « Automatic generation, testing is quick: build #1)2 3
e 4 5 6 ~ nano time scale (e.g. 1-10min) Each incremental build: Generator maps model A
to code. Class C imports (=depends on) B
o Sofre Engineting | RWTH Aschen S | RWTH 00 Sofvars Engrerng | RWTH Aschen S . |RWTH
Automation in Development Build Scripts and Development Steps
+ Manual derivation is extensive even on the micro B \ B2 \ + Macro time: development process t B \ B2 \
steps / time scale * Micro steps: manual activities
" . AR . . ! . I A
. ::atfemauc generation, testing is quick: nano time artifacts \ ¢ \ Nano time scale: automatic activities artifacts \ e \
N R . \ o + Build scripts (gradle, make, mvn) include v TV \
- Consequences: ag“e‘:g:g B. B. generation, compilation, testing, deployment, a;;g’e‘:::g Bo B.o
~ automate build with a robust build script ompiled Ac l consistency checks, transformation, etc. Compiled Ac L
~ automate testing (e.g. junit like) artifacts Ao Col Cd o artifacts Ao Co €O yme
:":’Dﬂ;"t‘;'a::ar: (see‘g.(zwgnuzgr)mnucus integration tools) « They are a natural part of the methodical steps
~au V: -9 . build #1 2 3
~ keep project buildable / testable at all times . of the development process.
~ reduce redundancy (single source of information)
~ use generators from abstract to concrete * Automation changes the development process!
~ avoid lengthy manual tool chains
~ reuse generators to stay agile + Agile evolution needs as much automation as
- DO NOT make one-shot generations possible.
- DO NOT modify generated artifacts
) Sotwars Engneadng | RWTH Azchen S RWTH o0z Sotvare Engiosarng | RWTH Aschen S RWTH
= e
Model-Based Sy Engi ing for Al ive System Dev

Functional Architecture

System Architecture

e

Product Structure

Bill of Materials (BOM)

04 Softvars Engnoerng | RWTH Aschen

SE=

134

26.12.2023

Challenges in Model-Based Systems Engineering of Automotive Systems

« Stakeholder Needs

Chall c |

is Overwhel

+ Examples from smaller(!) excerpts

Stakeholder Operating Technical | Realization
Needs Principle Architecture | Layer — From customer to stakeholder needs of how complexity complicates
| ~ Use Case Templates (Cockburn & development and evolution
! Fowder)
e @ a] —.0 - =
T . o _— + Operating Principle
e 9 — Semantical Feature & System
Foundation R e
P o\ ~ Design pattern
e - & —ah .
TOs w0 + Technical Architecture
~ Connection between Logical &
o hoA Technical Architecture (DSL) requirements functions roduct test structure
-?-\ s ~ Integrate Features d P
&b « Realization Layer
: ~ Tracing solutions to requirements
~ Generative connection
805 Software Engineering | RWTH Aachen S m" 806 ‘Software Engineering | RWTH Aachen S m
=N e
Systems Engineering Concepts we Already Know Rep.

K
e

MBSE

20. Wrap Up / Summary

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

Theory
contains enables

Model language e

[Development
is sound method
for

hierarchically

foundation
conforms to
consists of
used for
=
—

produced by
uses

executed by
T e |
AN

‘ Developer | | Tool ‘

=

+ The concept model illustrates some relevant concepts and their relationships.
« In this chapter we introduced: model, development method, and their underlying theory.

08 ‘ Softvars Engnoerng | RWTH Aschen

S et

Concept Model for Development Methods and Projects

hierarchically

L

assumes Developer

as\

=

consists of done

executes

subactivity,

& "
creates. updates

Artefact-Type

has

resps subtasks
creates updates

—

Method definition ' Project (method application)

Function-based Universal ifi

pecification and Construction Principles

09 ‘ Software Enginoaring | RWTH Aachen

0]
it
:

1. The function paradigm is the foundation
~ Clear boundaries, clear input/ouput signatures

«energy»

«energy»
2. Abstraction with dedicated models to master «fluid»
complexity
«item» 21

3. Controlled, explicit underspecification
~ abstraction, variability, ability to describe the desired «datay

range of allowed behaviors
«signaly

4. The concept of stream
~ as mathematically precise, time dependent model of
inputioutput behavior

5. Composition into hierarchies of function nets
6. Static dimensioning of parameterized functions

7. Adequate modelling techniques center around the
function paradigm, e.g. SysML

«fluid»

Cyber- «item»
Physical e ——

System «data»
—

asignal»

810 Softvars Engnoerng | RWTH Aschen

SE=

135

26.12.2023

Content of the Lecture

Benefits of Model-Based Software Engineering (MBSE)

Modelling in Development
Software and Systems Engineering
Development Methods (Agility, Scrum, V)

Modelling Paradigms:
~ Data, Function, Structure, Behavior

Modelling languages, e.g.
~ Class Diagrams for data and physical entities

— StateCharts for state-based behavior
~ Architecture for function, component and gadgets
iR srsiins
un =

LaNcACt

Modelling Cyberphysical Systems
Modelling Software

Software synthesis (code genera

Composition
Refinement

Evolution (Agility)
Variability

« You would not design an airplane by putting together nuts and bolts — why should we do this with software?

+ MBSE reduces the conceptual gap [FR07]
~ Between problem domains (e.g., robotics, medicine, law) and solution domain (software engineering)

* Models increase abstraction
~ the model of a software application is specified on a higher abstraction level than traditional programming languages

+ This eases communication, documentation, and integration of domain experts

+ MBSE enables and facilitates automation
~ Model checking, artefact tracing, integration
Model i del-to-text, model-t

+ MBSE facilitates producing high-quality software
~ Depends on the generator. Easy to improve (generated) code base

FRO7] R. France, B. Rumpe. Model-Driven Development of Complex Software: A Research Roadmap. In: Future of Software Engineering 2007 at ICSE

Softwars Engincaring | RATH Aschen

a2 Softvars Enginserng | RWTH Aschen S

Learning Objectives

Model-Based Systems Engineering

Understanding, applying, analyzing, evaluating, and creating

~ Models by applying modeling methods

~ Functional modeling and models in systems engineering

~ Requirements modeling

~ Data modeling

~ Geometric and physical modeling
~ Structure and behavior modeling
— Systematic CPS engineering

Syntax and semantics of selected modeling

languages (including UML, SysML)

Digital twins

Quality assurance

Taxonomy

 Can e et oty 2 sndrdocion?
Evaluating: [e m S e

o studentscrest now product orpnt f vew?
They ot bo a0 st Constr crol. 5033
et

Remembering: :""W

o
e i*;zm 5| & We hope you had fun and
= will actually be able to
=l = productively use the
- knowledge learned.

Management Cockpit
for Controlling

MontiArc Architecture Modeling Eheesea ehtand

deepening the knowledge:
Bachelor and Master theses
on sub-topics are available

All the best,

.) Bernhard Rumpe and Team
Energie Navigator modeling infrastructure for
building information management

SMATrDT specification method for
requirements, design, and testing

a1

Software Erginearng | RWTH Aschen,

14 Softvare Engnonrng | RWTH Aachen S

136

