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Why Modelling? We need to Compensate the Growth of Complexity

• Society thrives on cyber-physical systems
 Communication, energy, home automation, 

manufacturing, medicine, transportation, …

• Added-value mainly software

• Software complexity grows in magnitudes
 Distributed, self-adaptive, intelligent, …

• Modeling can overcompensate the growth 
of complexity in systems engineering

• Systems engineering is interdisciplinary
 Conceptual gap: problem vs. solution domains

Chevy Volt 
(10 Mio. LoC)

Boeing 787
(14 Mio. LoC)

LHC CERN
(50 Mio. LoC)

High-Value Car
(100 Mio. LoC)

Google Services
(2 Bio. LoC)
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The Limits of my Language Mean the Limits of my World (Wittgenstein)

Avionics

Aerodynamics

Propulsion
Communication

Mechanical
Structure

Human
Machine

Interaction

Legal

EconomySafety
Regulations

Electrical
Engineering

Software

Environmental 
Impact

Software Engineering  |  RWTH Aachen4

The Limits of my Language Mean the Limits of my World (Wittgenstein)

Modeling with domain experts requires precise domain-specific modeling languages
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• Understanding, applying, analyzing, evaluating, and creating 
 Models by applying modeling methods
 Functional modeling and models in systems engineering
 Requirements modeling
 Data modeling
 Structure and behavior modeling
 Systematic CPS engineering

• Syntax and semantics of selected modeling 
languages (including UML, SysML)

• Digital twins

• Quality assurance

Learning Objectives
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Some First Literature

• [Rum16] Modeling with UML: Language, Concepts, 
Methods. Springer International, July 2016.

• [Rum17] Agile Modeling with UML: Code Generation, 
Testing, Refactoring. Springer International, 2017

• German versions are also available online: 
https://mbse.se-rwth.de/
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• Modelling Cyberphysical Systems
• Modelling Software

• Software synthesis (code generation)

• Composition
• Refinement
• Evolution (Agility)
• Variability

Content of the Lecture

• Modelling in Development
• Software and Systems Engineering
• Development Methods (Agility, Scrum, V)

• Modelling Paradigms: 
 Data, Function, Structure, Behavior

• Modelling languages, e.g.
 Class Diagrams   for data and physical entities
 StateCharts for state-based behavior
 Architecture for function, component and gadgets

MBSE
1. Introduction and objectives
1.1. What is a Model?
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And what is it good for?

What is a model?

Software Engineering  |  RWTH Aachen10

Models are Used in all Disciplines
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Ein Modell ist seinem Wesen nach eine in Maßstab, Detailliertheit 
und/oder Funktionalität verkürzte beziehungsweise abstrahierte 
Darstellung des originalen Systems. (German original)

Ein Modell ist seinem Wesen nach eine in Maßstab, Detailliertheit 
und/oder Funktionalität verkürzte beziehungsweise abstrahierte 
Darstellung des originalen Systems. (German original)

Definition of the Term “model”

A model is a reduced respectively abstracted representation of the 
original system in terms of size, detail, and/or functionality. 
A model is a reduced respectively abstracted representation of the 
original system in terms of size, detail, and/or functionality. 

(Stachowiak 1973)
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• There is an original

• Abstraction (reduction) is integral part of being a model

• Models have a purpose with respects to the original: 
 They are used to study the original

• Models can be prescriptive:
 The model is designed first and the system then after the model

• Models can be descriptive:
 The system exists and the model is used to study and understand the system

Consequences from the “model” Definition

A model is a reduced respectively abstracted representation of the 
original system in terms of size, detail, and/or functionality. 

(Stachowiak 1973)
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How Model and System relate

Forms of models:
• Mental model
 exists in the head of a developer

• UML / SysML / DSL model
 Engineering model for development: 

communication, generation, analysis, and simulation

• Implicit model  (embedded in code)
 Engineering model for simulation

(no communication, no analysis, no generation)
 May be usable as software part in a system

• Learned model  (from data)
 Derived from system or observed from system execution
 (ML/NN: also in an implicit, “executable” form)

SystemModel

Developer

creates,
analyses

uses

generates to, 
predicts, describes, …

derives from,
updates System

Execution

executes

derives from

Simulation

generates 
to

simulates (Digital Twin)
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• Rutherford‘s and Bohr‘s atomic models
• Einstein‘s theory of relativity
• Model of the Big Bang
• Physical laws are models, ...

• Not all models are correct,
 Geocentric model of Copernicus

• Many models are only valid in certain boundaries

Example Physics: Validity of Models
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The First (Still Existing) Models: Ancient Cave Drawings
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• A model used for prediction
• There is exactly one original
• The model is complex:
 Consisting of many sub-models for
 Phenomena and geometric separation

• A bunch of integrated models 

• The model is composed through various 
 Laws from theories (physics, etc.)
 A large set of measurements

• The model is executable for simulation
 And written in programming languages that

(more or less directly) encode physical laws

Model of Climate Change
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• Models are composed
• Models are evolving
• Models are compared
• Models are analyzed
• Models are used to derive/generate/synthesize systems
• Models are defined using theorems and laws

• Consequently:

• Definition and use of models are 
based on an appropriate 
underlying theory

• Math is a well-known, very precise and 
rigorous foundation for such a theory.

Modeling Needs a Sound Theory

MBSE
1. Models
1.2. An Example: Automata

Prof. Dr. Bernhard Rumpe
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RWTH Aachen 
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• Recognizing automaton  (S,I,δ,s0,F) has
• (also: nondeterministic, alphabetical Rabin-Scott 

Machine (RSA)) 

 Finite set of states S
 Input alphabet I
 Set of initial states s0 S
 Set of final states F  S
 Transition relation δ  S  I  S

where
  represents the non-existent input characters in 

spontaneous transitions
 I = I  {}

 All sets S, I, s0, F are non-empty and finite

Recognizing Automata

recognizing
automaton

m n

0

1

01

marker for 
initial state

marker for 
final state

transition with 
input symbol 0

initial state

1

2

3

4

5

6

7

8

11

12

13

14

15

16

17

10

9
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Examples of Recognizing Automata

m n

,

0-9

p q

0-9

0-90-9

incomplete transition relation, because
comma is not accepted in this state

m n

,

p q

0-9

0-90-9

ε

5

ε-transition

multiple
transitions

non-deterministic
because of ε resp. 5

0-9

recognizing
automaton

recognizing
automaton
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Example Automata Syntax: 
Model Representation by Graphics, Text and Math

• Textual in ASCII / UTF-8:

automaton Simple {
state 1 <<initial>>;
state 2 <<final>>;
1 - a > 2;
2 - b > 1;

}

1
2
3
4
5
6

• Mathematical:

Tuple (S, I, 1, {2}, 𝛿)
 Set of states S = {1,2}
 Set of inputs I = {a, b}
 Initial state 1 ∈ S
 Final states {2} ⊆ S
 Transition function 𝛿 : S  I → S

 with 𝛿 1, 𝑎 = 2;   𝛿 2, 𝑏 = 1

1
2
3
4
5
6
7

• typically restrictions apply 
(context conditions)

• more variants: XML/JSON-encoding, 
Java-encoding (State Pattern), …

• Tabular:

source
target 1 2

final

initial     1 a

2 b

ab

1

2

Automaton

• Graphical / diagrammatic:
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• Automaton syntax defined by tuple
Sy = (S, I, s0 ∈ S, F ⊆ S, δ : S  I → S)
 Set of states S
 Set of inputs I
 Initial state s0 ∈ S
 Final states F ⊆ S
 Transition function (partial) 𝛿 : S  I → S

Example Automata: 
Semantics Definition using Math

• Each representation of automata has its benefits
• However, math is efficient and optimal for constraints 

(context conditions), e.g.,:
 All states are reachable: 𝛿∗ 𝑠0, 𝐼∗ = 𝑆 
 Automaton is total:   ∀𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼: ∃𝑡 ∈ 𝑆:  𝛿 𝑠, 𝑖 = 𝑡 

or short:   dom 𝛿 = S  I 

• Math is also optimal for formal semantics definition:
 Choice of the semantics domain:

 𝑆𝑒𝑚 = 𝐼∗

• Semantics mapping: the set of accepted words:
 𝑀 𝐴 =   𝑤 ∈ 𝐼∗   𝛿∗ 𝑠0, 𝑤 ∈ 𝐹 }

• (this definition assumes automaton is total)

• Various interpretations of domain I are possible:
 ASCII characters (e.g., in parsing)
 Signals (e.g., in communicating distributed systems)

ASCII
chars

Signals

simple interpretation of 
inputs I in the real world

M: Sy  Sem Semantic 
domain

PS:  𝐼∗ is the set of words over alphabet  𝐼 ; 
𝛿∗ the transitive closure over function 𝛿
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• Finite automata come with a rich theory 
and well-known techniques:

• Powerset construction derives a deterministic automaton

• Error completion

• 𝜖 - Transition elimination

• Equivalence checks (used e.g., by model checkers)

• Mapping of regular expression to automata
• Which includes various forms of automaton 

composition (∩, ∪, ¬, sequence .∘., Kleene closure  .∗ )

• Theory helps to define semantics as well to efficiently map 
the automaton to an executable implementation

Example Automata: 
Nondeterministic Automata

• First of all:
 Nondeterminism and underspecification are related 

(almost the same)

• To introduce nondeterminism, we adapt the 
automaton syntax to:
 Sy = (S,   I,   S0 ⊆ S,   F ⊆ S,   δ : S  I →(S) )
 Set of initial states S0
 Transition relation δ instead of function:

δ can now offer multiple transitions (|δ(s,i)| > 1 allowed)

• Semantics domain uses again the set(!) of words 
over I:

 𝑆𝑒𝑚 = 𝐼∗

• Semantics mapping: the set of accepted words with a 
path to a final state:

 𝑀 𝐴 =   𝑤 ∈ 𝐼∗   𝛿∗ S0, 𝑤 ∩  𝐹 ≠ ∅ }
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• Automata A and B are consistent: M(A) ∩ M(B)  ∅
 i.e. the do not specify conflicting properties of a component
 Can effectively be checked using an intersection automaton

• We recognize:
• Automaton theory demonstrates that:

• M(A) ∩ M(B)   =   M(A ∩ B) 
• i.e. composition ∩ of automata is conform to individual 

mapping and composition of semantics

• Set theory is an excellent vehicle to understand consistency, 
underspecification and refinement 

Example Automata: 
Automaton refinement and consistency

• Nondeterministic automata 
• Sy = (S,   I,   S0 ⊆ S,   F ⊆ S,   δ : S  I →(S) )
• 𝑆𝑒𝑚 = 𝐼∗

• 𝑀 𝐴 =   𝑤 ∈ 𝐼∗   ∃𝑠0 ∈ 𝑆0:  𝛿∗ 𝑠0, 𝑤 ∩  𝐹 ≠ ∅}

• Automaton A is well defined: M(A)  ∅
 i.e. it accepts something
 Syntactic sufficient criterion: 
 ∃ 𝑠 ∈ 𝑆∗:   ∀𝑛: ∃𝑖:  𝑠௡ାଵ ∈ δ s୬, i ∧ 𝑠଴ ∈ 𝑆0 ∧ 𝑠௡ ∈ 𝐹

 Can effectively be checked using transitive closure

• Automaton A is refinement of B: M(A)  M(B)
 i.e. A is more deterministic than B
 Can effectively be checked using a simulation relation 

(see model checking)
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And what is it good for?

What is a theory?

Software Engineering  |  RWTH Aachen27

Characterization of the Concept “Theory”

Definition:

A theory is an analytical tool for understanding, 
explaining, and making predictions about a given
subject matter. 

• This distinguishes from “theory” in some senses 
of common language:

 A belief, policy, or procedure proposed
 A hypothesis assumed for the sake of argument or investigation
 An unproved assumption : conjecture
 Abstract thought : speculation

“Nothing is more practical than a good theory.”
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• Theory is constructed of a set of sentences that are 
entirely true statements about the subject under 
consideration. 
 Theories have underlying assumptions (axioms).
 Theories have explanatory power, but also limitations.

• An axiomatic theory, consists of axioms and rules of 
inference. 
 A theorem is a statement that can be derived from those 

axioms by application of these rules of inference. 

Consequences from the Characterization of ”Theory”

Definition:

A theory is an analytical tool for understanding, 
explaining, and making predictions about a given 
subject matter. 

• A formal theory is syntactic in nature. 
 Thus a theory comes with an underlying language

• Theories are usually expressed mathematically, 
symbolically, or in natural language, but are generally 
expected to follow principles of rational thought or 
logic. 
 Consequence: A theory can always be constructed in the 

formal language of mathematical logic. 

(partly adapted from Wikipedia)

Software Engineering  |  RWTH Aachen29

• Automata in practice also have many 
 concrete forms of syntaxes with 
 various extensions and 
 applications in various domains.

Example Theory: Automata

The Automaton Theory has 

• a foundational language / data structure / 
mathematical object: 
 usually a tuple: (S, I, S0, F, 𝛿)

• a rich body of algorithmic operations to 
 Transformation of automata
 Derivation of relevant properties

• such as:
 Removal of unreachable states
 Transformation from nondeterministic to deterministic  
 Refinement
 Composition of automata
 Decision for language inclusion between automata, etc.
 Slicing of relevant automaton parts

• and precise laws underpinning these algorithmic results

ab

1

2

Automaton
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 Equation is the most important tool:
 a+a = 2*a

 It has a very precise meaning (semantics):
 It tells us what is equal, 

 But also gives methodical assistance:
 the substitution property allows us to use it for 

transformation -- in both directions and with pattern 
matching, e.g.
 a+a transforms to   2*a
 2*(x-1)  transforms to   (x-1)+(x-1)
 a+a+a transforms to   2*a+a (or to a+2*a)

 Theory works best if the underlying objects of discourse 
are made explicit, a sound and consistent semantics is 
given, and operations on the objects are grounded on the 
semantics.

Example Theory: Math

• Math has been growing over hundreds of years.
 math has become a big building consisting of a complex 

set of theories.

• Its basics:
 Constructing math objects with:

sets, functions, tuples, graphs and numbers

 Laws as core mathematical property definition.

• Observations:
 Math has tried hard to have only foundational axioms 

 To ensure consistency proofs are often re-done using 
different theorems

 Proves can be seen as transformation of mathematical 
objects 
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• Care: Each paradigm induces an abstraction with 
underlying assumptions on the real world
 these usually have limitations

Modelling Language and its Theory is based on a Modelling Paradigm

For simplification and abstraction a modelling language 
theory is based on a modelling paradigm around which 
the theory is built. Highly relevant paradigms:

• Data structure
 describing how data is organized (stored, transformed,…)

• Behavior
 describing digital event and continuous processes

• Function
 describing how (physical and software) components fulfill 

their duties

• Architecture
 describes structure and relationships of components

World 1

World 2

interpretations in the 
real world (with limitations)

M: Sy  Sem Semantic 
domain

MBSE
1. Models
1.4. Language, Method
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Modelling Languages in the Software Domain

• Languages are a key for software development
 Modeling languages like UML
 Programming languages like Java
 Markup languages like XML, HTML for various purposes

• Modelling languages enable to make models explicit 
and manageable (“first-class citizens”).

• Explicit modelling languages enable to
 Build automatic tools for model analysis, synthesis, code 

generation, etc. 
 Reuse models
 Aggregate data to information in form of models
 Models@Runtime enable adaptivity

• Computer science invented modeling languages

• Digitalization of other engineering domains enforces 
explicit languages for 

Java

C#

C C++
Haskell

Statecharts

Lisp

Ada

Prolog Fortran Kolin

R

Delphi

Eiffel

Scala

TypeScript

PHP

Groovy

Perl

SQL

VerilogRust

Cobol

Lustre

ABAP
Scheme

Groovy

XML
Julia

Python

Sed, awk, bash

Javascript

Kotlin
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Modelling Languages in for Systems Engineering

• Digitalization of engineering domains demands 
explicit languages for as well

• Languages are a key for systems engineering

 Physical modeling: Modelica, Simulink

 CAD: STEP, NX CAD, ECAD

 Simulation: Dymola

 Knowledge: OWL, RDF

 Integration: AutomationML

 Circuits: VHDL

 Building Information Models (BIM)

STEP
EXPRESS-G

XML

CMSD

ECAD

OPM

Dymola
Statecharts

STEP-NC

UML4IoT

SysML4Modelica 

UMM

VHDL

MechatronicUML

DiSpa

SysML4Mechatronics 

RDF

DAML+OIL

FFBD

IDEF0

HLA

MODAF
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• UML is a second-generation notation for object-oriented modeling

Unified Modeling Language (UML)

1995:

~1990:

OOSE
Jacobson

OOD
Booch

OMT
Rumbaugh et al.

...

Booch / 
Rumbaugh / 
Jacobson

1997: UML 1.1
1999: UML 1.3
2001: UML 1.4
2003: UML 1.5
2005: UML 2.0
2007: UML 2.1.2
2009: UML 2.2
2010: UML 2.3
2011: UML 2.4.1
2015: UML 2.5
2017: UML 2.5.1
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Features

• Elements for specification, communication
and documentation
 among developers
 developers with users
 union of several previously existing methods

• Set of modeling concepts and concrete notations 
• Standardized since September 1997 by OMG
• Developed by Booch, Rumbaugh, Jacobson, Selic, 

Kobryn, Cook and many others...

The Unified Modeling Language is a Graphical Modeling Language for Software Systems

Goals

• Description of essential properties of the program like 
in a blueprint

• Structuring of problem and solution

• Abstraction of implementation details

• Definition of various views covering several paradigms
 task assignment and workflows
 software and system architecture
 interaction between components
 behavior of components
 implementation
 physical distribution
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• SysML is dedicated to model the software part of 
(embedded) systems

• It started as variant of UML, but will probably become 
independent (with 2.0)

• SysML reuses 7 of UML's 14 diagrams, and adds 2 new 
diagrams 
 requirement and parametric diagrams

Systems Modeling Language (SysML)

2007: SysML 1.0
2008: SysML 1.1
2010: SysML 1.2
2012: SysML 1.3
2015: SysML 1.4
2017: SysML 1.5

2019: SysML 1.6

~2024: SysML 2.0
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• Models are the central notation 
in the development process

Model-Based Development

models

simulation

dimensioning of system

constructive: 3D-printing
code generation, synthesis

automated tests

refactoring/
transformation

documentation

• Models can serve as central notation for systems development
• A good modeling language can be used for analysis and synthesis

analysis

rapid prototyping

design
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M8. Defining reference models for the capture, design, 
or implementation of requirements

M9. Statically analyzing or verifying design decisions

M10. Efficiently evolving designs

M11. Understanding semantic differences between 
versions

M12. Describing detailed system behavior for 
generating software parts

M13. Implementing/realizing/synthesizing systems 
in general

Needs for modeling during development of systems and software

M1. Specifying systems in requirements engineering

M2. Formulating and evaluating design alternatives

M3. Describing system aspects or views for 
communication

M4. Designing system architectures

M5. Describing systems for validating desired system 
properties in simulations

M6. Collecting user feedback through visual 
simulations, prototypes, and mock-ups

M7. Modeling variants in product lines From: [BR23] M. Broy, B. Rumpe:
Development Use Cases for Semantics-Driven Modeling Languages.
In: Communications of the ACM, Volume 66(5), pp. 62-71, ACM, May 2023. 
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Needs for modeling during system operation

M14. Customizing systems

M15. Monitoring running systems

M16. Capturing deviations between desired or even
optimal (modeled) properties and observable 
(realized) system functionalities

From: [BR23] M. Broy, B. Rumpe:
Development Use Cases for Semantics-Driven Modeling Languages.
In: Communications of the ACM, Volume 66(5), pp. 62-71, ACM, May 2023. 

M17. Documenting systems

M18. Capturing system execution traces and labeling 
them with model elements, thus linking system 
and traces reliably
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• Industry standard: Unified Modeling Language
 15 kinds of diagrams (class diagrams, Statecharts etc.)

• Industry standard: Systems Modeling Language

• But beyond the UML and SysML:

 Petri Nets Algebraic Specifications
 Logic Entity/Relationship-Models
 Relations Jackson Structured Diagrams
 Dataflow diagrams Control flow diagrams
 SDL Grammars
 Finite automata Regular expressions
 Nassi-Schneidermann diagrams BPMN
 etc.

Models in Software Engineering

UML-P - UML-Profile for agile Modeling

Tutorial on language, semantics, code
generation, test cases, test pattern, 
refactoring, evolution
http://mbse.se-rwth.de/
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Agile UML-based Software Development: Constructive Use of Models for Coding and Testing

consistency
analyzer

“smells” &
errors

parameterized
code
generator

system

test code
generator

tests

statecharts
class 
diagrams

C++, 
Java …

deployment 
diagram

sequence 
diagrams

object 
diagrams

__:

__:

__:

OCL
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Domain Specific Language (DSL)

• A domain specific language (DSL) is a software 
language specialized to a particular application 
domain. 

 A general-purpose language (GPL) in contrast is broadly 
applicable across domains and lacks specialized features 
for a particular domain (such as C++, Java, …).

• allows us to model application domains and systems 
in those domains like
 business, telecommunication, traffic, ...

• addresses the application domain instead of the 
technical solution

• usually built on one modelling paradigm 

• is not necessarily “executable“ or “complete”

Sensor Type Comment Unit

OT double Outside  temp. °C

RT double Room temp. °C

OT < 6 implies RT >13.0 and
OT > 22 implies RT = 0.8 * OT
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General Programming Language (GPL) vs SysML/UML  vs Domain Specific Language (DSL)

• Explicit models written in UML/SysML

+ Model can be analyzed (formal methods!)
+ Relatively compact (and manageable)
- For execution: code generator needed

• Explicit models written in a DSL

+ Model can be analyzed (formal methods!)
+ Very compact models
- Language tools need to be developed
- For execution: code generator needed

• Implicit “models” written in a programming language (GPL)

+ Model can easily be executed
+ very general programming techniques, Turing complete
- Relatively technical and awkward “models”
- Execution is the only purpose
- No high-level analyses possible

Java

C#

C

C++
Python

Kotlin

 Systems Engineering

 Various domains with
recurring problem 
structures

 Simulation in
Systems Engineering
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The Methodological Pyramid

• Process models, such as RUP, V-Model, define the 
overall development process .

• They are composed of an appropriate set of 
development tasks and activities, such as “elicit 
requirements”, “review the architecture”

• To accomplish these tasks a large set of “micro
methods”, e.g. using a best practice, a design 
pattern, tools for analysis, generation or synthesis, 
tools for evolution and transformations, etc.

• All these tasks are finally executed on the set of 
artifacts, that contains all relevant development 
information, such as requirements, all kinds of 
models, tests, code.

artifacts: models, 
diagrams, code

micro-methodology, analysis, 
transformation, generation

development tasks 
and activities, 

process patterns

process
models

Software Engineering  |  RWTH Aachen46

V-Model: A Standard Process to Develop Software

• The V-Model has 

 a constructive left wing:
 from requirements, analysis, design, coding

 and a quality assurance and testing right wing:
 from unit tests to acceptance tests

• In the V-Model
 each activity on the left corresponds to tests on the right

• The V-Model assumes manual work in all activities, 
it is agnostic to models and automation

• In practice: more than 2/3 of the work occur on the 
right side
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• In a software & systems development process:
 Models are composed
 Models evolve
 Models are compared
 Models are analyzed
 Models are used to derive/generate/synthesize systems

• This works best if there is

 A) a precise understanding of what a well-defined model is (syntax)
 B) a precise definition of what a model means (semantics)
 C) an elaborated underlying mathematical theory 

consisting of theorems and laws that give us 
tools at hand to analyze, transform, test, etc. the models

 Syntax and semantics are covered by modeling language definitions
 Theory is an underlying supplement for the semantics definition

Models are Most Useful if Grounded on a Theory of Modeling
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• “Automation has proven to be the single most effective means of making dramatic improvements in both 
productivity and product quality” 

Bran Selic, 2019
• Automating :
 Generation, synthesis
 Constructive derivation of implementations or more detailed forms of models
 Transformation
 Correctness by construction

 Analysis
 Consistency checking, completeness, well-formedness rules, etc.
 Applicability of transformations 
 Automatic verification

 Testing

 Simulation 
 As a technique for testing and dynamic analysis

 … and many more

Automation Of Development Steps
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Summary of this Lecture in form of a Concept Model

Development 
activity

Model language

conforms to

produced by

used for

Development 
method

hierarchically 
consists of

uses

Actor

Developer Tool
Project

Model executed by

Theory
contains

is sound
foundation 

for

enables

• This conceptmodel illustrates relevant concepts/terms and their relationships of this lecture.

Concept
model
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Excercise your understanding of Models: Who/What is (not) a Model?

exercise

Appendix
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What is a Model, What is an Original?

(Rene Magritte)
exercise

Appendix

MBSE
2. Modeling Structures with Class Diagrams
2.1. Object-Oriented Structural Modeling in a Nutshell

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen 

http://www.se-rwth.de/

Farbe!

Software Engineering  |  RWTH Aachen53

• Modeling cyber-physical systems needs to describe the structure 
of relevant objects 
 physical components
 software components
 data

• Often many instances/copies of an object are needed
 classes describe sets of objects 

(screws, engines, kinds of data values)

• A system is structurally decomposed in subsystems and 
components. 
 structural modelling is used throughout the development 

• This chapter discusses class diagrams as the language for 
structural modelling using the object-oriented paradigm.

Structural Modeling for CPS
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• We perceive individuals (objects) that 
 have properties (attributes) and 
 act in their environment (through functions)

Object-Orientation is an Intuitive Modeling Paradigm Close to our Perception of Reality

• e.g.: Muhammad Ali, Albert Einstein, Ronaldo

• Objects belong to classes, which define their type • e.g.: Person, Boxer, Athlete, Scientist, Citizen, …

• Classes define properties and functions of all their objects • e.g.: Each Person has a name
• e.g.: Each Boxer has a history of fights
• e.g.: Each Scientist can conduct research

and Scientists can act as Citizens
• Structuring systems and their parts via “classified” objects 

supports
 grouping of properties and functions are modelled together 
 encapsulation: some of the properties are internal, access / 

connection through an explicit interface
 inheritance: objects inheriting from a supertype inherit 

properties and functions
 polymorphism: an object (instance of a class) can occur as 

element of several “supertypes” and act as such

• e.g.: Current mood of a Person

• e.g.: each Scientist is a Person

• e.g.: Boxers and Scientists can act as Citizens
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Objects in the Physical World (Systems Engineering)

• A system consists of a dynamically changing 
number of physical objects

• Objects represent entities of the domain and 
instances of exactly one class

• An object can be uniquely identified

• An object has a state as defined by its properties
 result of an operation depends on the current state

• An object has a behavior modelled by the 
functions of its class

• Objects connect state with functional behavior.

class
LightBulb objects

Basics
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• An object belongs to exactly one class
 a class defines the properties and the functional behavior of its objects.

• Classes are organized in a generalization tree, in which the properties and the functional 
behavior are refined in sub-classifications.

Concepts of Object Orientation

Class
Basics

Electric
Car

Car

classes (types)
of cars 

e.Go Cars Tesla Cars Chevrolet Cars

MBSE
2. Modeling Structures with Class Diagrams
2.2. Modeling with UML Class Diagrams

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen 

http://www.se-rwth.de/

Farbe!
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Example of a Class Diagram

VehicleOwner

String brand
Double mileage
Date dateOfApproval

String firstName
String lastName
int age

1..*

CD

MotorCycle

Boolean isTouring
Boolean isSport

Car

int numberOfDoors
Double trunkVolume

• Characterizes all relevant properties and 
associations of drivers and vehicles for a 
specific application or domain

this is a class 
diagram (CD)

Meaning of this Class Diagram (CD)

It defines a class Owner
• each instance of Owner (Owner object) has three 

attributes firstName, lastName, age
(attributes are defining properties of owners)

• each Owner object is related to 1 or more Vehicle
objects

a class Vehicle
• each Vehicle object has three attributes

a class Car
• a Car is a special type of Vehicle
• each Car is a Vehicle
• each Car object can be used as a Vehicle object
• each Car object has at least the attributes inherited 

from class Vehicle (and possible more)
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Example of a Class Diagram

VehicleOwner

String brand
Double mileage
Date dateOfApproval

String firstName
String lastName
int age

1..*

CD

MotorCycle

Boolean isTouring
Boolean isSport

Car

int numberOfDoors
Double trunkVolume

• Characterizes all relevant properties and 
associations of drivers and vehicles for a 
specific application or domain

Meaning of this Class Diagram (CD)

• It defines a class Owner
 each instance of Owner (Owner object) has three 

attributes firstName, lastName, age
(attributes are defining properties of owners)

 each Owner object is related to 1 or more Vehicle
objects

• a class Vehicle
 each Vehicle object has three attributes

• a class Car
 a Car is a special type of Vehicle
 each Car is a Vehicle
 each Car object can be used as a Vehicle object
 each Car object has at least the attributes inherited from 

class Vehicle (and possible more)

this is a class 
diagram (CD)
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Meaning Of Class Diagrams

VehicleOwner

String brand
Double mileage
Date dateOfApproval

String firstName
String lastName
int age

1..*

CD

MotorCycle

Boolean isTouring
Boolean isSport

Car

int numberOfDoors
Double trunkVolume

• Characterizes all relevant properties and 
associations of drivers and vehicles for a 
specific application or domain

General Meaning Of Class Diagrams

• A class diagram defines a set of possible object 
structures

• Classes define sets of objects with shared properties

• An object is instance of one class 
(this class is also the type)

• Classes can relate to other classes 
 governs their relations (associations) to other classes

this is a class 
diagram (CD)



26.12.2023

11

Software Engineering  |  RWTH Aachen61

Class with Attributes and Methods

field for the class name

ElectricEngine

+ long getPartNumber()
+ int getAge()
+ start(Power p)
# ignite()
+ String getBrand()

+long partNumber
#String  brand
-Date  constructed

visibility:

protected

public

private

attribute list:
types can  be omitted
(also called properties)

list of methods (also called functions):
signature of a method can be
incomplete (e.g. arguments omitted)

comment

This electric engine is 
built for high end cars

CD
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• A class has many objects as “instances”
• Objects have concrete attribute values

Class and some Object Instances

ElectricEngine

+ long getPartNumber()
+ int getAge()
+ start(Power p)
# ignite()
+ String getBrand()

+long partNumber
#String  brand
-Date  constructed

CD OD

kitt:ElectricEngine

partNumber = "X1387482“
brand = "Tesla IPM-SynRM3"
constructed = July 2, 14:00

ecto1:ElectricEngine

partNumber = "X984154“
brand = "BMW eDrive40“
constructed = May 17, 10:30

herbie2:ElectricEngine

partNumber = “YT22333 “
brand = "VW ID.3 APP 310"
constructed = May 17, 10:30

this is an 
object diagram (OD)
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• Stereotype classifies a model elements  (e.g., class or attribute)

• Specializes the meaning of the model element
 allows a special representation
 target-specific code generation 
 etc.

• Stereotype shape: «Name»

Stereotypes

«interface»
Engine

«abstract»
Wheel

«message»
StatusMessage

stereotypes for classes CD

• Predefined
• Meant for external

access
• No instances

• Predefined
• No direct instances

(but subclasses)

• Custom defined stereotype
• has application- or

company-specific meaning

+ start(Power p) - long innerRadius
- long outerRadius

methods 
only methods and 

attributes
Stereotype is
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Derived Attributes

• If an attribute can be calculated (derived) from others, 
then it is labeled with “/”.

• The relationship (calculation) of the attribute can be 
given using e.g. logic or math:

 volume = 2 * 2 * innerRadius2 * outerRadius

• In OOP:
 Derived attribute can be stored redundantly

 Or can be calculated by a method each time

CD

Wheel

- long innerRadius
- long outerRadius
+ / long volumederived attribute 

with visibility

outerRadius

innerRadius

Software Engineering  |  RWTH Aachen65

Class Attributes and Methods

• Certain attributes (and methods) are equal for all 
objects of a class: they do not belong to individual 
objects, but belong to the class
 E.g. the atomic number of a material or the number of 

existing instances of a class

• In OOP (e.g. Java) “static” keyword is used; in the 
UML such elements are underlined.

• In OOP constructors are also static elements that 
belong to the class 

• Methodical guideline: to be used as little as possible
(inheritance issues: no access to super, no use 
with interfaces, …)

class attribute 
(underlined)

CD

IronGadget

IronGadget(…)
-int atomicNumber
-int noOfObjects
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• An association describes the relationship between two classes

Associations

CD

tax office demands logs 
for business cars 

analyze

«interface»
Engine

Wheel

1 2..4 * *

DriversLog

Vehicle Person
0..* 0..1

ownerasset

property

{ordered}
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Associations -2

composition

association name

cardinality

navigation direction
(class do know about each other)
(here only in one direction)

association role

navigation (knowledge)
in both directions

CD

optional tag {ordered}: 
remembers order and
allows qualified 
access (through 
position number)

«interface»
Engine

Wheel

1 2..4 * *

DriversLog

Vehicle Person
0..* 0..1

ownerasset

property

{ordered}
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• Association as binary relation between classes
 “Person owns Vehicle”

 the person is navigating to the vehicle using
 association role “asset” on the opposite side
 a person may own of up to 99 cars (0 .99) 

• Cardinalities
 exactly one: 1
 optional: 0..1
 arbitrary: *
 not null: 1..* (or +)
 fixed intervals: 3..9, 17 , 21, 42..99 (but rarely used)

• {ordered} access can be used on cardinalities >=2 

Associations - Roles, Names, Cardinalities

cardinality

association role CD

Vehicle Person
0..99 *

ownerasset

owns
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Role Names

• Role names are used for navigation
(logical and/or in the implementation)

• What if the role name is missing? 

• Alternatively usable, if unambiguous
a) class name of the opposite class with small caps
b) association name

• Example
 given: Vehicle v

 equivalent are: 
- v.owner,     v.person,     v.property

CD

Vehicle Person
0..* 0..1

ownerasset

property
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Associations relates Classes and Links relate Objects

• Manifestation of an association through links at 
runtime:

OD

Vehicle Person
0..99 *

ownerasset

owns

ecto1
peter

egon

ray

michael
kitt

CD

object 
diagram
(with objects 
and links)

jack

car01

car02

car03

car56

plato

link between two objects
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Composition

• Composition = special form of association

• Semantics of composition

 composite is composed of parts 
 objects form a strongly coupled unit
 parts depend on the composite
 life cycle is combined 

(destroying the composite also destroys parts)
 replacement of part is (normally) not possible

 however: different interpretation in tools 

• Consequence: part (object) can only be in one 
composite (structure)

Ford_Mustang

TCode120
Engine

RaceStar92

1 4

composition 
as a special 
association

cardinality

CD

cardinality in diamond is
1 (default) or 0..1

(in this example
we wrongly model 
that the wheels 
are never changed) 
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• Qualification “name” allows to select individual Person objects 
• The same object can linked to different SocialGroup objects through different qualifications (names)

Qualified Association and Links

smithBMWFans:
SocialGroup

jackDoe:Person
OD

richardSmith:Person

DoKoPlayers:
SocialGroup

johnDoe:Person

SocialGroup Person
* 0..1

member

doe

john

doe2

name
CD

object 
diagram
(with objects 
and qualified 
links)
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• Qualified associations allow selection of individual objects from a set using a qualifier

• Qualifiers can be: 
 integer interval (0 -..), if association is {ordered}
 explicit identifier (attribute) of the target object (here: “name”)

• Composition can also be qualified 
• Qualification at both ends is possible

• Qualified association provides additional mechanisms for processing
 selective access, selective modification

Qualified Associations

Worker Task
* 0..1

todo

CD
SocialGroup Person

* 0..1

owner
name

{ordered}
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Generalization, Inheritance and Interface-Implementation

CD

analyze

«interface»
Vehicle

+void start()

MotorizedVehicle

# kWh enginePower
…

Car

+ int numDoors

Motorbike Truck

+ int numDoors

Axle

2..4
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Generalization, Inheritance and Interface-Implementation

…

interface marked with 
stereotypes and italic names

interface 
implementation

superclass
inheritance

abstract class 
(name in italics)

several subclasses

CD«interface»
Vehicle

+void start()

MotorizedVehicle

# kWh enginePower
…

Car

+ int numDoors

Motorbike Truck

+ int numDoors

Axle

2..4
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Generalization and Inheritance 

• Generalization uses a semantic (classification) view
 hierarchical structuring of classes
 subclass is a subtype
 subclass describes a subset of the objects of the superclass
 substitution principle 
 instances of the subclass are usable, 

where instances of the superclass are allowed

• Inheritance is a technical mechanism used in OOP:
 inheritance between pairs of classes 
 attributes and methods are transferred 

from superclass to subclass
 further attributes and methods can be added 
 method overriding is allowed  

Car

+ int numDoors

MotorizedVehicle

# kWh enginePower

+ void start()
- int getPower()

…

CD

inheritance,
generalization
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Interfaces

• Interface are used in OOP
 an interface describes the signatures of a collection of methods, 

that belong together. 
 unlike classes
 no attributes (only constants)

 interfaces may also inherit from one another

• Classes implement interfaces
 similar to inheritance

• Methodological use:
 structuring access for classes

• Interfaces are mainly for software coding in OOP
 Reason: e.g. implement multiple interfaces in a class 

MotorizedVehicle

# kWh enginePower

+ void start()
- int getPower()

…

«interface»
Vehicle

+void start()

CD
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Abstract Class

• Abstract Class is used in OOP

 representation: italic 
 or «abstract»

 builds a hybrid form between an interface and a “normal” class

 implementation in form of method bodies and 
attributes are partly available

 abstract methods without implementation 

 but: no instances (objects)

MotorizedVehicle

#Time time

+ void start()
- int getPower()

…

«interface»
Vehicle

+void start()

CD
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Multiple Inheritance

• When using generalization there may be 
“overlapping” classes

• Multiple classifications possible, e.g., the Seaplane

• UML modeling permits
 a class inherits from multiple classes

• Java does not, 
 for technical reasons  
 but allows classes to implement multiple interfaces

• Kotlin allows this multiple inheritance
 demands reimplementation of

move() in subclass Seaplane

CD

Boat Airplane

Seaplane

move()

move() move()

Vehicle

move()
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Interface Implementation

• Mainly applicable for OOP:

• An interface can extend multiple other interfaces

• A class can implement multiple interfaces 

• UML: a class can inherit from multiple classes

Model3_Engine

«interface»
Electrical_Engine

«interface»
Engine

«interface»
Electrical_Device

interface extension

interface
implementation

CD
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Kinds of Associations

Worker Task
* *

todo

CD

Student Course
* *

participates

{ordered}

System Component
1..*

builtFrom

SocialGroup Person
* 0..1

owner
name

Boat

Vehicle

inheritance is not
an association 
(between objects):
Two classes, but only one 
Object is instantiated
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On the modeling power of CDs

• Associations can model arbitrary graph structures

 Set: use *-associations
 List: use *-associations with {ordered}
 Map: use qualified association

 Tree, Graph: use *-association with recursion

• Famous: the composite design pattern 
[Gamma et.al. 93]

 Composite: manages sets of components
 Components may also be composites
 Additional “Leaf” classes build the atoms

 Care: it is the responsibility of the software to ensure that 
its objects form a tree (and not a cyclic graph)

Component

with attributes

Composite

more attributes

*

parts

CD
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Summary: UML Class Diagram Syntax

• Class diagrams have 
 classes with attributes and methods 
 abstract classes, interfaces 
 inheritance, interface extension and implementation 
 associations with 
 names, roles, cardinalities, navigation directions 

 variants of associations
 composition 
 qualified association

• Stereotypes and tags specialize individual model 
elements 

• Not discussed extensions
 aggregation, association with > 2 partners, …

«interface»
Interface

association

Component

with attributes

Composite

more attributes

*

parts

CD

0..1

1..*

MBSE
2. Modeling Structures with Class Diagrams
2.3. CD Modelling based on the UMLP-Tool

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen 

http://www.se-rwth.de/

Farbe!
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Example “Social Network”

CD SocNet

Person

Date lastVisit
String firstName
String secondName
Date dateOfBirth
int zip
String city
String country

«abstract»
Profile

String profileName
/int numOfPosts
/int friends

Group

boolean isOpen
Date created
String purpose
/int members

profileName

1 *

organizer

1tagged 1
*

replyTo

0..1

Relationship

boolean isPending
Date requested
Date accepted

«enum»
RelationType

FRIEND
FAMILY
FOLLOWER
COLLEAGUE
OTHER

Tag

boolean confirmed

Photo

double height
double width

picture

InstantMessage

Date timestamp
String content

1.. *

* 1

«interface»
Post

PhotoMessage

organized

* 1invited

* 1initiated

*

member
* *

* *received

1 *sent

{ordered}

{ordered}
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• A class diagram thus becomes a text-file of this form and is stored in SocNet.cd 

We Use a Textual Notation for CDs

classdiagram SocNet {

class {...}

class {...}

enum {...}

association ... ;

composition ... ; 
}

1
2
3
4
5
6
7
8
9

10
11
12

CD
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• Classes and interfaces look similar to Java code 
• but neither contain methods nor visibilities.

Classes and Interfaces

classdiagram SocNet {

interface Post;

class InstantMessage implements Post {
Date timestamp;
String content;

}
}

1
2
3
4
5
6
7
8
9

CD SocNet

InstantMessage

Date timestamp
String content

«interface»
Post
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• An association in the CD:

• Navigation directions:   ->, <-, <-> and  --
• Optional:
 Association name, multiplicities

Associations (I)

CD SocNet
member

* *

association member [*] Person <-> Group [*];

multiplicity, can be [*], [1], [0..1], [1..*]

navigation direction, 

class name
assoc. name

GroupPerson
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• An association in the CD:

• Role names for navigation 
• Qualifier is an 
 (1) a type (notation: [Type] ) or
 (2) attribute of the opposite class (notation: [[attribute]] )

Associations (II)

CD SocNet

profileNameorganizer1
organized*

GroupPerson

association [1] Person (organizer) 
<-> 

(organized) [[profileName]] Group [*];

role names qualifier

Software Engineering  |  RWTH Aachen90

• A composition in the CD

• Composed part (B) is part of the composition (A).
 Composed object may only occur once in a composition

• Examples:

composition c1 A  -> B;  
composition c2 A <-> B [*];  
composition c3 A [[theQualfier]] -- B [1];  
composition c4 A -- B [*] <<ordered>>;
composition c5 A -> B [1..*];

Composition
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• An enumeration (enum) can be used as type:

class Relationship {
boolean pending;
Date requested;
Date accepted;

}

enum RelationType { 
FRIEND, FAMILY, FOLLOWER, COLLEAGUE, OTHER; 

}

association Relationship -> RelationType [1];

Enumerations

CD SocNet

1

Relationship

boolean isPending
Date requested
Date accepted

«enum»
RelationType

FRIEND
FAMILY
FOLLOWER
COLLEAGUE
OTHER
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package dex;
import java.util.Date;

classdiagram SocNet {
abstract class Profile {

String profileName;
/int numOfPosts;
/int friends;

}
class Person extends Profile {

Date lastVisit;
String firstName;
String secondName;
Date dateOfBirth;
int zip;
String city;
String country;

}
class Group extends Profile {

boolean isOpen;
Date created;
String purpose;
/int members;

}
association member [*] Person <-> Group [*];
association [1] Person (organizer) <-> (organized) [[profileName]] Group [*];

The full CD SocNet in textual form (I)

CD SocNet

Appendix
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class Relationship {
boolean isPending;
Date requested;
Date accepted;

}
association invited   [*] Relationship <-> Profile [1];
association initiated [*] Relationship <-> Profile [1];
enum RelationType { FRIEND, FAMILY, FOLLOWER, COLLEAGUE, OTHER; }
association Relationship -> RelationType [1];

interface Post;
association received [*] Profile <-> Post [*] <<ordered>>;
association sent [1] Profile <-> Post [*] <<ordered>>;
class InstantMessage implements Post {

Date timestamp;
String content;

}
association [*] InstantMessage <-> (replyTo) InstantMessage [0..1];
class PhotoMessage extends InstantMessage;
association [1..*] Photo (picture) <-> PhotoMessage;
class Photo {

double height;
double width;

}
class Tag {

boolean confirmed;
}
association [1] Person (tagged) <-> Tag [*];
association [*] Tag <-> Photo [1];

}

The full CD SocNet in textual form (II)

CD SocNet

Appendix
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• Extends / Implements
 No inheritance cycles
 Classes may only extend classes, interfaces only 

interfaces
 Only interfaces may be implemented

• Attributes
 Start in lower-case and must be unique
 Type must be resolvable and (optional) initialization must 

be type compatible
 Overriding attribute in sub class must be of same type as 

the attribute in super class

• Diagram Name
 Must match file name
 First character upper-case

• Keywords
 May not be used for types, e.g., “class”, “implements”

• Classes, Interfaces, Enumerations
 Must be unique
 First character upper-case
 Enum constants must be unique within an enum

CD4A Context Conditions - 1
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• Types
 Generics may not be nested
 Usage of generics must be parameterized with the correct 

number of type-parameters (e.g., invalid: Optional, 
Optional<>, Optional<A,B>, valid: Optional<A>)

 Derived attributes may not be initialized

• Associations
 Source may not be an enumeration or external type
 Ordered associations must have a cardinality 

greater than 1
 Qualified
 Attribute of attribute-qualifier must exist in referenced 

class
 Type of type-qualifier must be resolvable

 Names:
 Association names and role names must start in lower-

case
 Association names, role names and implicit role names 

(lower-case name of target type) must not conflict with 
each other or attributes in the source class

 Composition
 Cardinality on side of the composite is [1] (default) 

or [0..1].

CD4A Context Conditions - 2
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Graphical vs. Textual Models

• Models can have different representations:

 e.g., graphical, 

 textual, 

 mathematical

• Best fitting form depends on the purpose of use.

A C

-¬
 ∧ D

B

 ∧- E¬

C := A;
D := !A && B;
E := !A && !B;

c = a
d = ¬a ∧ b
e = ¬ a ∧ ¬ b



26.12.2023

17

MBSE
2. Modeling Structures with Class Diagrams
2.4. Software and Systems Modeling with CD

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen 

http://www.se-rwth.de/

Farbe!
Software Engineering  |  RWTH Aachen98

Class Diagrams, their Semantics and Interpretation in the Real World

• Class diagrams have 
 syntax: boxes, arrows, triangles, text, …
 semantics (meaning) as intrinsic property:

a class diagrams describes a set of object structures.

• To be discussed: 
 interpretation of the “objects” in the real world

• Systems engineering has different interpretations than 
software engineering
 object can be a physical thing
 vs. object can be data in a computer

• Examples
 cyber-physical objects: car, plane, spacecraft, factory, screw, 

water, energy, …
 data and events flowing in the system, …
 beings: you, me, Alan Turing, Mickey Mouse, …
 abstract objects: plan, recipe, …

Physical
Things

Data

interpretation of 
objects in the real world

M: Sy  Sem Semantic 
domain

all possible 
“object structures”

Vehicle
CD
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Class Diagrams, Semantics and their Interpretation in Real World -2

• Given a class “Car”.
• What does it describe?

• Two standard interpretations:
 the set of real cars (on the street)
 data about cars, as e.g. stored in production, at EuropCar, in 

a tax office, or in Flensburg

• These are describing different, but related things

• During a development: the interpretation of a class 
diagram may change (from the real thing to the data 
about it)

• Data objects obviously describe physical objects
 in the system development both interpretations may be used, 

because both (data and cars) are present in a CPS

interpretation of 
objects in the real world

M: Sy  Sem Semantic 
domain

all possible 
“object structures”

Car

CD

“AC-E-33”,
blue BMW …
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• More fine-grained stereotypes are possible, e.g:
 «signal» … data sent around
 «subsystem»
 «item»

Stereotypes for Semantic Interpretation

• Two standard interpretations:
 the set of real cars (on the street)
 data about cars, as e.g. stored in production

• The interpretation can be embodied in the model 
using stereotypes

 «material»… elements, compounds, alloys, …
 «component»… machinery, …
 «energy»…        types of energy
 «being».. humans, animals, …
 «data» … for object structures, 

and other forms of data

 By default: no such stereotype = data

M: Sy  Sem Semantic 
domain

«data» 
Car

M: Sy  Sem Semantic 
domain

«component»
Car‘

CD

“AC-E-33”,
blue BMW …
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Structural Modeling of Components – Example

«abstract»
«component» 

Motor
ℕ buildYear

«component»
CombustionEngine

cm³ cylinderCapacity
EnergyType fuelKind

«component»
ElectricEngine

kW energyConsumption

km range
kWh stateofCharge

start()
stop()

«component»
Battery

+ charge(kW p)

«component» 
Vehicle

«component»
Rotor

«component»
Axle

«component»
Coil

CD

energySource

powers

influences

Software Engineering  |  RWTH Aachen102

Data Structure of a Bachelor/Master Course – Example

CD

Module

name: String
credits: Int

DegreeProgramme

name: String

Course

Grade

title: String
gradeValue: Int
credits: Int

Lecturer Student

matrNr: Int

*

*

*

responsible

*

*

1

1

* 1

«abstract»
Person

name: String
email: String

*

*

0..1

1

coordinator
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(Simplified) Data Structure of a Banking System -- Example

Customer

String firstName
String lastName
Date birthdate
String city
String street
String country

Account

long number
int balance = 5
int overdraft

CheckingAccount

double fixedInterestRate

SavingsAccount

double effectiveInterestRate

Deposit

int balance

Share
String name
int value

1

*

incoming

from

outgoing

to

* *

1 1

1

*

0..1

1

*

1

«enum»
TransactionType

PERIODIC,
ONE_TIME;1

«interface»
Employee

{ordered}

* */
type

Consultant

/ String personelId
number

Transaction

String reference
Optional<Date> executionDate
int value
/ boolean completed

current balance 
in cent

CD BankingSystem
derived 
association
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Modelling Software:
• Composition: used to build/compose software sub-

systems

• Associations used intensively
 Object graphs know each other and interact along 

associations
 Data structures realize associations (see 

Entity/Relationship models, SQL, …)

• Generalization/Inheritance: for classification and for 
reuse of methods and as extension principle

Associations and Composition in Software and System Structure

Modelling System Structure:
• Composition: a natural concept in the physical world
 Widely used in physical CD’s

• Associations in a physical world are of various forms
 (but rarely used)
 they can describe 
 physical connections
 some form of interaction in the functional sense
 or even a development dependency (“same height as”)

• Generalization: as classification concept

CD«component»
Rotor

«component»
Axle

«component»
Coil influences
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Modeling With Class Diagrams

UML CD Element Interpretation in Systems Modelling Interpretation in Software 
(Coding in OOP)

object real physical item; and element of a defining class instantiated from a class

class used as classification resp. type for objects software class, database table,
acts as “blueprint” for its objects

attribute property of an object storage for a value

«abstract» Usable in a generalization hierarchy to mark that 
all objects are elements of subclasses 

abstract class 
(cannot be instantiated)

«interface» N/A software interface (like in Java, C++)

attribute visibilities 
+, -, #

N/A defines access in software

method denotes a function that a physical object can do computational method

A comparison between modelling of systems and coding in software (implementation):
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Modeling With Class Diagrams -2

UML CD Element Interpretation in Systems Modelling Interpretation in Software 
(Coding in OOP)

inheritance generalization hierarchy: the elements of a subclass 
belong to the superclass too

generalization AND(!) 
reuse of code from superclasses

composition geometric and functional composition of physical 
objects to higher components / systems

data objects composed to higher 
components (but OOP doesn’t 
directly support composition) 

associations physical relations (glued together, interacting, etc.) data connections and underlying
infrastructure for interactions 
(method calls)

qualified 
associations

rarely used models lists of objects and maps of 
(key,value) pairs

identity “physical identity”, e.g. the sum of its atoms unique identifier to access an object 
from elsewhere
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General Duties of Class Diagrams 

Purpose of an UML CD In Systems 
Modelling

In Software 
Modelling 
(Coding in OOP)

Encapsulation of attributes and methods into a conceptual unit - ++

Instances as objects + ++

Type specification of objects (~ all possible objects) ++ ++

Extension (~ all objects that exist at a certain moment) ++ +

Characterization of the possible structures of a system
(~ all objects that might exist at any time point in any system run)

++ ++

Conceptual modeling of application field ++ ++

Implementation description (~blueprint) - ++

Class code 
(the translated and executable form of the implementation description)

- ++

Software Engineering  |  RWTH Aachen108

• Ideal solution 1:
The Modelling language provides SI-Units
 SI-Units as types, such as  “km/h”
 SI-Expressions, such as “3 m/s  * 7min”

• Solution 2:
Class diagram models “physical classes”, e.g.

Data in the Physical World

• Software knows types, such as
 int, long, double, float

• Physical modelling prefers SI Units, such as
 km, s (time), A (Ampere), etc.

• Typing a data value appropriately is helpful to avoid 
 Modelling errors, like:
 conversion issues
 illegal additions   (e.g. 2 km + 3 Volt)
 illegal assignments (e.g.  v = 3 m2/s)

CD4Phys«energy»

ElectricalEnergy
A current
V voltage

«physics»

Force
N abs
ℝଷ dir
ℝଷ pointOfOrigin
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• We require the following:
The data about a cars position and the real position 
only deviates 1m:

 inv CarData d:  
| d.p - d.describes.pos |  < 1m

(modelled in the Object Constraint Language (OCL))

Connecting Data and Physical Classes

• In a CPS model, we sometimes need to model 
 the set of real cars (on the street), AND
 data about cars, as e.g. stored in production

• Associations between classes of the physical and the 
data part of a system are allowed
 but they neither model data, nor physical properties

• Such an association is used as intellectual modelling 
construct to allow bridging the worlds in specifications
 E.g. to describe relations between their attributes

• Note: Type “Position” is a type like natural numbers 
(ℕ x, ℕ y) and can be used as data type as well as 
real property type in the physical world.

CD

describes

«component» 
StreetCar

Position pos

«data» 
CarData

Position p

MBSE
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Quality of a Class Diagram Model

• Quality is essential for usability, correctness and 
other important model properties

• Quality is defined relative to its purpose:
 Does the model fulfill its purpose?

• Few main categories of quality issues:

 A. Is the model correct?

 B. Is the level of abstraction good?

 C. Is the model presented well? 
(Readable, understandable?)

• Techniques to ensure quality?
 E.g. peer review, syntax checks, prototyping

Lecturer
+ String name

Student
+ String name

«abstract»
Person

CD

«component»
Screw

«component»
TableTop

«component»
Leg

4 1

«component»
Desk

*

«material»
Iron

«material»
Wood

CD

* *
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Quality of a Class Diagram Model

• Quality relevant questions should be refined:
•
• Does it model the correct properties and functions of 

all its object structures?
 E.g. with respects to requirements

• Details:
 1. Is it sufficiently detailed?
 2. Is it not overly detailed?
 3. Shall it be complete or underspecified?

• Is it presented well?
 1. Readable?
 comments are appropriate

 2. Well arranged?
 inheritance: from top to bottom or left to right
 composition: most relevant classes in the mid
 unnecessary redundancy

Lecturer
+ String name

Student
+ String name

«abstract»
Person

improvable: move name attribute to 
super class for proper encapsulation

inheritance: 
top-down

«component»
Screw

«component»
TableTop

«component»
Leg

4 1

«component»
Desk

*

«material»
Iron

«material»
Wood

relevant classes 
positioned centrally 

CD

CD

improvable: composition 
better top-down or 

left-to-right

* *
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Datenstruktur des Artefakt Modells

von SH
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Example CD
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Class Diagrams and their Interpretations

• A class “Car” has
• two typical interpretations:
 the set of real cars (on the street)
 data about cars, as e.g. stored in production

• Many additional interpretations possible: 
• In a system simulation
 the «material» “Car” class gets another interpretation:
 it acts as surrogate for the real object
 the «data» “Car” class remains unchanged

• In software testing 
 the «data» “Car” class may be mocked

• In data bases 
 class “Car” becomes a data table

interpretation of 
objects in the real world

M: Sy  Sem Semantic 
domain

all possible 
“object structures”

Car

CD

Testing
mocks

“AC-E-33”,
blue BMW …

Simulation
objectsinterpretation of 

objects in a simulation
(as a “model” of the 

real-world object)
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• Multi-user web-application for data management

• Developed using MBSE and lots of code generation
 Generate full application stack

• Starting point:
 Class diagram modelling the application data

 (+ some GUI models)
 + Application functions

Example: MontiGem Code Generator from Class Diagrams

Frontend Backend Database Screenshot of MaCoCo (Management Cockpit for Controlling),
developed by AGe, PH, JM, LN, SVa, GV, and others

Software Engineering  |  RWTH Aachen117

Summary: Class Diagrams for Structure and Data

• Object-orientation is paradigm of data modeling close to 
our perception of reality
 classes model objects
 associations their relations
 inheritance allows for classification and for “code / property 

reuse”

• UML class diagrams can be applied to describe:
 data in a system
 physical objects (components) of the system using 

stereotypes «material»  and «component» 
 energy types «energy» 
 types of fluids «material»
 events in a system «event»
 Context of a system, which then also may include humans 

• Class diagrams are also used to describe meta-things, 
e.g. relevant for development tools, see SLE lecture

qualified association

Class

Type attribute

Class

Type method()

«interface»
Interface

qualificator

1

*

composition

role

CD
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Using Class Diagrams

• A class has many interpretations

 Physical: the set of real objects (car on the street)

 Data: data about objects (car data stored in production)

 Simulation: «material» objects acts as surrogate for the 
real object

 Testing: «data» classes may be mocked

 Data bases: class becomes a data table

• Dependent on interpretation a class diagram is used 
in different forms

• One prominent form is: derive code from a class 
diagram to be used in
 Tests, simulations and/or the real product

interpretation of 
objects in the real world

M: Sy  Sem Semantic 
domain

all possible 
“object structures”

Car

CD

Testing
mocks

“AC-E-33”,
blue BMW …

Simulation
objectsinterpretation of 

objects in a simulation
(as a “model” of the 

real-world object)
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• Principle: mapping the model to a programming language artifact

Code Generation

Even if no “automated” generator is available, the following transformations of UML to code are useful

hardware

generated code

platform-specific code,
frameworks, operating system 

...

BidMessa
gebiddingTi

me

Extension
Messageg       

reason

StatusMe
ssagenewStatus

Message
#Time 
time+Time 
getMessage
Time()

+deliverMe
ssage(Aucti
on)

« interfac
e»

Serializa
ble

+void 
serialize(
Buffer)

© © ©

©

©

…

A
u
c
t
i
o
n

«
i
n
t
e
r
f
a
c
e
»
B
i
d
d
i
n
g
P
o
l
i
c
y

«
i
n
t
e
r
f
a
c
e
»
T
i
m
i
n
g
P
o
l
i
c
y

P
e
r
s
o
n

1 1 * *

* *
bidderauctions

M
e
s
s
a
g
e

participants

Model

Generator
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• A supplier online auction system
(we developed for a company in the 90ties)

• Characteristics
 One purchaser calls for the auction
 Multiple bidders apply for a supply contract
 Bidding downward (the cheapest gets the contract)
 Real-time auction with duration of typically 2 h

• In the example:
• Auction of the annual electricity needs of 

large bank in Frankfurt (value: millions)

• Result: 46% cost reduction

Running Example: Online Auction System

Snapshot of the web applet in the browser
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Code Generation from a Class

Auction

#incNumberOfBids()

+long    auctionIdent
#String  title
-Money bestBid
int        numberOfBids

CD

generator Proposal?
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Challenges for Generators:

• Diagram may be inconsistent 
 invalid data type, attribute name twice, ...

• Class diagram does not contain method bodies?
 How will these be completed?

• Diagram is incomplete 
 not all attributes,...

• Alternative forms of generation?

Code Generation from a Class

Auction

#incNumberOfBids()

+long    auctionIdent
#String  title
-Money bestBid
int        numberOfBids

CD

class Auction {
public long auctionIdent;
protected String title;
private Money bestBid;
public int       numberOfBids;

protected void incNumberOfBids() { ... }
}

Java

generator

1
2
3
4
5
6
7
8
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• Possible requirements or additional features

 get/set methods for attributes
 serializability of objects
 storing objects in a database table
 e.g., creation of the table as SQL statement

 attribute access is secured by security manager
 platform dependency of the code

• Different requirements lead to different generators

 technique 1: parameterization of the generator

 technique 2: generating against an abstract interface: 
providing a runtime system 
(similar to the Java Virtual Machine)

Alternative Code Generation?

Auction

#incNumberOfBids()

+long    auctionIdent
#String  title
-Money bestBid
int        numberOfBids

CD

generator

class Auction {
public long auctionIdent;
protected String title;
private Money bestBid;
public int       numberOfBids;

protected void incNumberOfBids() { ... }
}

Java1
2
3
4
5
6
7
8
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Code Generator: Parameterization + Runtime System

Environment : hardware, GUI, frameworks

Generated code
with

inserted
parts

parameterized
Generator

Generator Script
Language
concept Code

BidMess
agebiddingTi

me

Extensio
nMessag

eg
reason

StatusM
essagenewStatu

s

Message
#Time 
time+Time 
getMessa
geTime()
+deliverM
essage(A
uction)

«interfa
ce»

Serializ
able

+void 
serialize
(Buffer)

© © ©

©

©

…

Auction

«interface»
BiddingPolicy

«interface»
TimingPolicy

Person

1 1 * *

* *
bidderauctions

Message

participants

Model

in
te

rf
ac

e

Manually in 
the project 

written code

runtime system

basic structure of the generated code with 
• parametrization
• handcrafted modules
• “runtime system”
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Code Generation using get/set-Methods

class Auction {
private long lAuctionIdent;
private String sTitle;
private Money mBestBid;
private int iNumberOfBids;

synchronized public long getAuctionIdent() { return lAuctionIdent; }
synchronized protected String getTitle()   { return sTitle; }
synchronized private Money getBestBid()    { return mBestBid; }
synchronized public int getNumberOfBids()  { return iNumberOfBids; }

synchronized public void setAuctionIdent(long x) { lAuctionIdent=x; }
synchronized protected void setTitle(String x) { sTitle =x; }
synchronized private void setBestBid(Money x)   { mBestBid =x; }
synchronized public    void setNumberOfBids(int x) { iNumberOfBids =x; }

synchronized protected void incNumberOfBids() { 
setNumberOfBids(getNumberOfBids()+1); 

}
}

generator

Auction

+long    auctionIdent
#String  title
-Money bestBid
?int       numberOfBids
#incNumberOfBids()

Java
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Code Generation using get/set-Methods

class Auction {
private long _AuctionIdent;
private String sTitle;
private Money mBestBid;
private int iNumberOfBids;

synchronized public long getAuctionIdent() { return _AuctionIdent; }
synchronized protected String getTitle()   { return sTitle; }
synchronized private Money getBestBid()    { return mBestBid; }
synchronized public int getNumberOfBids()  { return iNumberOfBids; }

synchronized public    void setAuctionIdent(long x) { _AuctionIdent =x; }
synchronized protected void setTitle(String x) { sTitle =x; }
synchronized private void setBestBid(Money x)   { mBestBid =x; }
synchronized public    void setNumberOfBids(int x) { iNumberOfBids =x; }

synchronized protected void incNumberOfBids() { 
setNumberOfBids(getNumberOfBids()+1); 

}
}

generator

Auction

+long    auctionIdent
#String  title
-Money bestBid
?int       numberOfBids
#incNumberOfBids()

Java
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Code Generation using get/set-Methods

class Auction {
private long _AuctionIdent;
private String _Title;
private Money _BestBid;
private int _NumberOfBids;

synchronized public long getAuctionIdent() { return _AuctionIdent; }
synchronized protected String getTitle()   { return _Title; }
synchronized private Money getBestBid()    { return _BestBid; }
synchronized public int getNumberOfBids()  { return _NumberOfBids; }

synchronized public void setAuctionIdent(long x) { _AuctionIdent =x; }
synchronized protected void setTitle(String x) { _Title =x; }
synchronized private void setBestBid(Money x)   { _BestBid =x; }
synchronized public    void setNumberOfBids(int x) { _NumberOfBids =x; }

synchronized protected void incNumberOfBids() { 
setNumberOfBids(getNumberOfBids()+1); 

}
}

generator

Auction

+long    auctionIdent
#String  title
-Money bestBid
?int       numberOfBids
#incNumberOfBids()

Java
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• Example:

• If necessary, further transformations describe the adaptation of individual parts
• Depending on visibility (“/”, “+”, etc.) , variants of these translation rule may be used
• Representation of these scripts in tools highly different!

Script for Code Generation

…$Class

$tags  $Type  $attrib

…

class $Class { ...
$tags  $Type  $attrib; 

}



CD source of  
transformation

result

“schema variables” like “$tags” describe pieces of the source,
which can be used in the target again

Java MBSE
3. Deriving Software from Class Diagrams
3.2. Code generation for inheritance and associations

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen 
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• Inheritance, interface implementation and interface 
extension can be mapped directly to Java

• Problem: one class inherits from several 
superclasses:

• Three solutions:

a) a super class is converted to an interface 

b) delegation instead of inheritance

c) combination of both

• Selection of the solution depends on the context

Inheritance

in UML, but not in Java

C

A B
CD
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In the model:

Handling of Multiple Inheritance

A

attr1  

foo() {...}

B

attr2  

bar() { ...}

S

CD

discuss
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Code structure:In the model:

• But:
 two objects contain the new distributed state: 

more complex

Handling of Multiple Inheritance

A

attr1  

foo()

B

attr2  

bar() { ...}

«interface» 
IB

bar()

1bObjS

bar()

bar()  {  bObj.bar(); }

A

attr1  

foo() {...}

B

attr2  

bar() { ...}

S

CD
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• Simple association 1-to-1 or 1-to-*
 has navigation in one direction only 

• Code generation described by this transformation:

1-to-*-Association

$ClassB
1

$roleB
$ClassA

* $assocname

…
$ClassA

+$ClassB get$RoleB()

+set$RoleB($ClassB b)

-$ClassB $roleB

• ClassB is not affected 

• assumption: association has public visibility

…
CD

…
CD


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• Navigation only in one direction

*-to-*-Association

$ClassB
*

$roleB
$ClassA

* $assocname

…
$ClassA

+Set<$ClassB> get$roleB()

+add$roleB($ClassB obj)

+remove$roleB($ClassB obj)

+boolean has$roleB($ClassB obj)

-Set<$ClassB> $roleB
• ClassB is not affected again

• HashSet stores multiple references

• the “get”-method provides an unchanged set

• possibly other methods, e.g., iterators

…
CD

…
CD


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• Implementation in a decentralized variant

• In principle, management of the association on both sides as before

• But: consistency requires additional infrastructure:

*-to-*-Association with Navigation in both Directions

$ClassB
*

$roleB
$ClassA

*

$roleA

$assocname


…

$ClassA

+Set($ClassB) get$roleB()

+add$roleB($ClassB obj)

+remove$roleB($ClassB obj)

+addLocal$roleB($ClassB obj)

+removeLocal$roleB($ClassB obj)

-Set($ClassB) $roleB

• $ClassB is created analogously

• modification methods such as “add” or  “remove” also 
change the links of the opposite side of association 
using the auxiliary functions “addLocal” and 
“removeLocal”

• the “get”-method returns unchangeable sets

…
CD

…
CD
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• Implementation in a centralized version with a Singleton
 An association class manages links centrally

• Class $Assocname uses internally a relation navigable in both directions
• Access from $ClassA or $ClassB via one central object, i.e. the singleton

• But: more complex internal management structure

*-to-*-Association with Navigation in both Directions

$ClassB
*

$roleB
$ClassA

*

$roleA
$assocname



…
CD

…
CD

$ClassB
*

$roleB
$ClassA

1

$roleA «singleton»
$Assocname 1*
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• HashMap allows the realization of a qualifier

• But: redundant storage of the qualifier in a HashMap and the target class 
 may require that qualifier value cannot be changed in the target

• Access functions and modifiers can be offered in like the Map 
 but the Map must not be exposed itself

Qualified Association



…
CD

…
CD

1

$roleB

$assocname

$ClassB

$QualiType $qualifier
$ClassA

…

$ClassA

+Collection($ClassB) get$roleB()

+$ClassB get$roleB($QualiType)

+put$roleB($QualiType q, $ClassB obj)

-Map<$QualiType,$ClassB> $roleB
• $ClassB is not changed

$qualifier
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• Composition treated like an association

• But: (temporal) dependency of the sub-object is not realized
• Possible solutions:
 A) developers must respect composition themselves
 B) access signature is reduced, preventing sub-objects to be removed

Composition



…
CD

…
CD

• $ClassB is not changed

• modification of association is permitted only in the 
object’s initialization phase

…
$ClassA

-final $ClassB $roleB

1

$roleB
$ClassA $assocname $ClassB

Software Engineering  |  RWTH Aachen140

• This sections showed code generation from class 
diagrams for several constellations

 variety of syntactic elements: many possible variants

 some variants are optimal in various contexts

 selection is not trivial!

• The transformations shown can be understood as 
guidelines for manual implementation

• But also: Code generation from class diagrams can 
be automated 

Summary Code Generation from CD 
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• Multi-user web-application for data management

• Developed using MBSE and lots of code generation
 Generate full application stack

• Starting point:
 Class diagram modelling the application data

 (+ some GUI models)
 + Application functions

Example: MontiGem Code Generator from Class Diagrams

Frontend Backend Database Screenshot of MaCoCo (Management Cockpit for Controlling),
developed by AGe, PH, JM, LN, SVa, GV, and others

MBSE
4. System and System Engineering
4.1. System
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Software Engineering
RWTH Aachen 

http://www.se-rwth.de/

Farbe!

Software Engineering  |  RWTH Aachen143

And how to engineer it?

What is a system?
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Definition System

An engineered system is a technical or socio-technical 
system which is the subject of an SE life cycle. 
It is a system designed or adapted to 
interact with an anticipated operational environment to 
achieve one or more intended purposes while complying 
with applicable constraints. (INCOSE)

A system is a set of entities, real or abstract, comprising
a whole. (Wikipedia)
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• Knowledge and investment are lost at project life 
cycle phase boundaries … increasing development 
cost and risk of late discovery of design problems.

• System design emerges from pieces, rather than 
from architecture … resulting in systems that are 
brittle, difficult to test, and complex and expensive to 
operate.

• Most major disasters such as Challenger and 
Columbia have resulted from failure to recognize and 
deal with risks. 

Challenges in Systems Engineering

General observations:

• Mission complexity is growing faster than our ability 
to manage it […] increasing mission risk from 
inadequate specifications and incomplete verification.

• Knowledge and investment are lost between projects 
… increasing cost and risk: dampening the potential 
for true product lines.  (Bradley Drake, et.al.)
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Checkland (1999):

1. Natural systems (Humans, Birds)

2. Designed physical systems (Car, Robot)

3. Designed abstract systems (Software)

 do not contain any physical artifacts

 designed by humans to serve some purpose

4. Human activity systems (Manufacturing, Politics)

 Observable human activities

5. Transcendental systems (Aliens)

 Systems beyond knowledge

General System Theory Distinguishes Various Types of Systems

Boulding (1965):

1. Structures (Bridges)

2. Clock works (Solar system)

3. Controls (Thermostat)

4. Open (Biological cells)

5. Lower organisms (Plants)

6. Animals (Birds)

7. Man (Humans)

8. Social (Families)

9. Transcendental (Aliens)

In our lecture: natural systems, social systems, technological systems 
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A System in its Context

• Operational system context: all external elements through which the 
system of interest interacts with through its boundary and interfaces

• In the context of a system of interest:

 Human actors (drivers, controllers, operators, …)

 Parts of the physical world (roads, weather, …)

 Parts of the cyberspace (data, services, …)

 Related systems

• Closed systems: no interactions with environment

→All aspects of the system are within the boundary

• Open systems: inputs and outputs with its environment

→Boundary defines how system parts interact with environment elements

Software Engineering  |  RWTH Aachen148

Cyber-Physical Systems

Cyber-physical systems are engineered systems 
where functionalities are emerging from the 
networked interaction of physical and computational 
processes. [BDS19]

CPSs are integrations of computation with physical 
processes. Embedded computers and networks
monitor and control the physical process, usually 
with feedback loops where physical processes 
affect computations and vice versa. [Lee08]

Cyber-physical systems combine computing and 
networking with physical dynamics. [Pto13]

• Comprise software parts and physical parts

• Often in networks or the Internet

• Popular applications: 

 Agriculture

 Assistive (home) systems

 Automated vehicles

 Avionics

 Manufacturing

 Medical systems 

 Offshore systems

 Oil drilling and mining systems

 Robotics

 Smart {home, garden, grid} components
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Consequences from the Definition of System and Cyber-Physical System 

• CPSs consist of 

 (multiple) software sub-systems and 

 (multiple) physical sub-systems

 Humans can be considered part of a CPS

• CPSs provide functionality through the 
interaction of

 Software systems

 Physical systems

 Software with physical systems 

 Physical with software systems

 Humans with other CPS components

Cyber-Physical System
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Consequences for the Engineering of Cyber-Physical Systems

• Engineering CPSs requires expert knowledge from

 Software Engineering (in several subdomains)

 Mechanical Engineering (in several subdomains)

 Electrical Engineering

• Domains use different models that need to be 

integrated in a holistic engineering approach

 E.g., integrating concurrency models of computing with 

time abstractions in physical systems [BDS19]

Mechanics E/E

Software
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And how to manage SysE projects?

What is systems engineering?

Software Engineering  |  RWTH Aachen153

Systems Engineering is an Interdisciplinary Approach for the Realization of Systems

Definition (INCOSE 2016): 

Systems Engineering (SysE) is an interdisciplinary
approach and means to enable the realization of 
successful systems.

It focuses on 
• holistically and concurrently 

understanding stakeholder needs; 
• exploring opportunities; 
• documenting requirements; and 
• synthesizing, 
• verifying, 
• validating, and 
• evolving solutions 

while considering the complete problem, from system 
concept exploration through system disposal.

US Department of Transportation

INCOSE

A method decomposes the big problem 
into a set smaller, manageable activities
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Systems Engineering – Verification and Validation

• Validation: 

The assurance that a product, service, or system meets the needs of the 
customer and other identified stakeholders. It often involves acceptance and 
suitability with external customers. 

• Verification. 

The evaluation of whether or not a product, service, or system complies with a 
regulation, requirement, specification, or imposed condition. It is often an internal 
process. 

(Wikipedia)

• Verification != Validation
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Issues such as requirements engineering, reliability, 
logistics, coordination of different teams, testing and 
evaluation, maintainability and many other disciplines 
necessary for successful system design, development, 
implementation, and ultimate decommission become 
more difficult when dealing with large or complex 
projects. 

Systems engineering deals with work-processes, 
optimization methods, and risk management tools in 
such projects. It overlaps technical and human-
centered disciplines …

Systems engineering ensures that all likely aspects of a 
project or system are considered, and integrated into a 
whole. 

Systems Engineering – a Characterization

(Wikipedia)

Systems engineering is an interdisciplinary field of 
engineering and engineering management that focuses 
on how to design, integrate, and manage complex 
systems over their life cycles. 

At its core, systems engineering utilizes systems 
thinking principles to organize this body of knowledge. 

The individual outcome of such efforts, an engineered 
system, can be defined as a combination of 
components that work in synergy to collectively perform 
a useful function.

https://en.wikipedia.org/wiki/Systems_engineering

- To be read at home or at wikipedia
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The Relationship between Software Engineering and Systems Engineering

• In the past, software…
 was embedded into machines 
 controlled the behavior of a single machine
 engineering was part of systems engineering

• Consequently
 Software was primarily developed by 

programmers

• Today smart software connects and coordinates 
 Heterogeneous Systems
 Humans
 Networks (Industrial Internet of Things)

 Significant change of impact 

 Systems engineering tries to adopts software 
engineering methodologies

 Herman Hollerith’s Punch Cards
 First use: 1890 U.S. census
 Last use: 2012 voting machines

 Assembler code
 First use 1949
 Basically direct memory 

manipulation Modern general-purpose 
programming languages

 Object-oriented, functional, logical
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• From the definition: A system has one or more purposes with respects to its operational context.

• Consequence: Systems realize functions.

• Functions of systems

 Train  Mobility

 Car  Individual mobility, also: storage

 DaVinci medical robot  Remote operation

 Freighter  Transport

 Smart phone  Communication, photography, …

 Manufacturing system  Produce goods

 …

Systems Realize Functions Related to Their Purpose

Systems thinking is based on functional specification, design and implementation.
Geometry (i.e., physical shape): form follows function.

Software Engineering  |  RWTH Aachen158

Traditional Systems Engineering is Document-Based

Software
ASCTERM1  EXIT
+1        CA    FLAGWRD9 # INSURE 63

MASK  FLRCSBIT # BYPASSED TRIMMING
CCS   A        # MODE OF OPERATION
TCF   ASCTERM3
CA    FLAGWRD8 # BYPASS DISPLAYS
MASK  FLUNDBIT # INDICATED.
CCS   A

Legal

Integration

Propulsion

Mission Planning

Thermal Safety
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Traditional Systems Engineering Practice

• Stand alone domain models/designs related via

 Documents (often Word, Excel, …)
 Operations concepts
 Natural language requirements 
 Bill of materials
 Interface specifications (often tables)
 Deployment plans

 Manual reviews

 Informal communication
 White boards
 Design team meeting presentations
 Email
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• Current practice tends to rely on standalone 
(discipline-specific) models whose characteristics are 
shared primarily through static documents.
 Models are there (implicitly, in engineers heads, in code)

• MBSE moves toward a shared system model with 
remaining discipline-specific models providing their 
characteristic information in a mathematically 
rigorous format. 
 Discipline models integrated by design; experts use 

views.

From Documents to Models 

• Documents often use natural language (ambiguous), 
are not well-formalized (redundant), cannot be 
checked automatically (incomplete), cannot evolve 
automatically (static).

• Systematic and efficient engineering requires 
structural, behavioral, physics- and simulation-based 
models representing the technical designs which 
evolve throughout the life-cycle, supporting trade 
studies, design verification and system V&V.
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Model-Based Engineering (MBE): An approach to engineering that uses models as an 
integral part of the technical baseline that includes the requirements, analysis, design, 
implementation, and verification of a capability, system, and/or product throughout the 
acquisition life cycle. 
 National Defense Industrial Association, 2011

Model-based systems engineering is the formalized application of modeling to support 
system requirements, design, analysis, verification and validation  activities beginning in 
the conceptual design phase and continuing throughout development and later life cycle 
phases.
 INCOSE SE Vision 2020

Model-Based Systems Engineering

INCOSE IW January 30th, 2016 * Fosse
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• They capture information in a durable, evolvable 
format

• They focus on information integration rather than 
document generation allows for decimation of artifact 
inconsistency/staleness 

Opportunities of Model-Based Systems Engineering

• A coherent set of consistent, related models ensure 
integrity and enable traceability throughout the 
development process

 Enables top-down design decisions and drivers

 Automated change propagation, ambiguity 
checking

 Automated tracing of (changing) requirements to 
(changing) implementations

• These models provide the ability to codify institutional 
knowledge using formal methods, allowing for reuse 
and broad exposure

 Model checking on subsystem and system level

 Mitigation of loss of knowledge and investment 
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• Model-Driven: 
 Models even drive and guide the process

• Models are 

 primary development artifacts

 used and reused across activities

 enabler for a high degree of automation

 drivers of reuse

 enablers for agility

Model-Driven Systems Engineering

• Model-Based:  
 Models are used in some activities of development

• Models are

 Additional artifacts 

 Used in isolated forms 

 Employed for certain activities only

 Often used for communication, documentation, … only

 Rarely processed automatically
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Requirements Design Test
Safety-
assessment

Summary formulated as a Concept Model

Function

Model

System

• Systems and their functions are described by models, which are part of various
development activities

Concept
model

realizes
*

describes
Context

has

Development 
activity

Realization 
(Implementation)

Deployment
Production-
planning

Architecture
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Physical 
System

Energy

Material

Data

CPF
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And how to describe it?

What is a function?
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System Specification through Functions

• A system defines a cyber-physical function
 it encapsulates a physical and computational structure 
 performs data, energetic and physical transformations
 and is connected to its context through its interfaces.

• A system function is described through its
• input and output signature 

 types and forms of the 
- signals / data
- energy flow
- material flow 

• The functionality is mathematically 
described through the 
 relation between input and output

The concept of function is our first universal specification and construction principle

system boundary

flows: input

Cyber-
Physical 
System

Energy

Material

Data

flows: output

cyber-physical 
function

CPF
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System Specification through Functions -2

• A system defines a function

• Advantages of using the function principle:

• A) Mathematically very precise foundation exists
• B) Function composition exists
• C) Powerful modelling concepts

• Many possible forms of flow:
 Continuous (e.g., current, fluids, sand) vs. 
 discrete (e.g., data, product items)

• Many forms of I/O relations:
 May embody duration of the process 
 Internal state of the system
 Delay of reaction
 Etc.

system boundary

flows: input

Cyber-
Physical 
System

Energy

Material

Data

flows: output

cyber-physical 
function

CPF
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System Specification through Functions -3

• The function based construction principle was e.g. 
defined by Pahl/Beitz
 function paradigm originally as a mental concept 

•
• Later modelling of functions was added, e.g.:
 Mathematical differential equations for continuous 

physical processes

 Streams are well fitting a mathematical mechanism to 
describe these functions [BS01]

• Today, explicit modelling techniques are usable:

 UML, SysML for discrete processes, data and physical 
structures, behavior of functions, …

From: [KK98]

input
streams

output
streamsFunction

(Component)
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Models describing System Functions

• A system defines a function

• Aspects to be defined in abstract, purpose fitting 
models:

 Interface signature

 Internal structure (architecture)
 Logical structure
 Geometrical shape

 Behavior (over time)

 Interactions

 Assumptions about the context

Cyber-
Physical 
System

Energy

Material

Data

CPF

Abstraction with dedicated models to master complexity is the second universal principle.
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Example: Simple Adder as a Software Function 

• A software system defines a function with behavior

 Data are discrete numbers arriving pairwise and shall be 
added

 This is a sufficient specification:  z = x+y
 It connects inputs directly with the output

 Observation over time shows a stream of inputs being 
mapped to a stream of outputs

 Here: we do not specify:
 Timing details
 Absence of values on x or y inputs

 Here: Output is only dependent on current input 
(without any history)

ℕ x

ℕ y

ℕ z

input signature: 
natural numbers

output 
signature

relation

x: 2      3     0     6    1

y: 1      3     3     2    1

z: 3      6     3     8    2

time

CPF

z = x+y

Adder
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Timing in the Simple Adder

• Specification:  z = x+y
only describes the „current“ behavior.

• Software function acts over time:
 Discrete sequences of inputs and outputs

• Assuming we have “model of time”  Time
• The real and complete interface:
 x, y :   Time → ℕ
 z  :   Time → ℕ

• The complete, time dependent specification is:
 ∀ t ∈ Time:   z[t]   =   x[t]  +  y[t] 

• Which is only abbreviated by:  z = x+y
• Time is so intrinsically present in all specifications:

we often omit its explicit notion

ℕ x

ℕ y

ℕ z

The real, time-aware signature 
of this channel: x: Time → ℕ

0      1     2     3    4

y: 1      3     3     2    1

z: 3      6     3     8    2

time

x: 2      3     0     6    1

Time

The real, time aware specification:
∀ t ∈ Time:   z[t] = x[t] + y[t] 

CPF

1

2

3

4

5

6

7

8

11

12

13

14

15

16

17

10

9

z = x+y

Adder
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Orientation of Inputs and Outputs is Relevant

• A software system defines a function with behavior

 This specification:  F :   z = x+y
is an equality that does not distinguish input and output

 Semantically equivalent alternatives:
 z = x + y y + x = z
 x = z – y 2*y + x  =  2*z - x

• Flow direction of signals however distinguishes what 
is input and what is calculated/produced:
 Sum of x and y (Function Sum)
 Difference between z and x (Function Diff)
 Or also: an underspecified spread of z to x and y

(Function Spread)

ℕ x

ℕ y
ℕ zSum

x + y = z

ℕ z

ℕ x
ℕ yDiff

x + y = z

ℕ z
ℕ x

Spread
x + y = z ℕ y

Input and output is distinguished in the signature of a function; 
not necessarily in the body of the specification

CPF
1

2

3

4

5

6

7

8

11

12

13

14

15

16

17

10

9
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• Math style model of the function

• Programming style model of the same function

component Converter(double n) {
in    (N force, m/s velocity) a;
out  (N force, m/s velocity) b;

laws:
b.force = n ∗ a.force;
a.force∗a.velocity = b.force∗b.velocity

}

Forms of Denoting Formulae

(N F, m/s v) a
Converter(n)

(N F, m/s v) b

CPF

CPF

21

22

23

24

25

26

27

28

31

32

33

34

35

36

37

30

29

1

2

3

4

5

6

7

8

11

12

13

14

15

16

17

10

9

• Unfortunately math and programming choose to use 
different forms of notations
 (for a variety of reasons)

• We are aware that:
• Math uses indices e.g. Ai = (Fi,  vi)
• Math uses SI-Units, like N, m/s (N = newton, force)
• PLs use types, records, classes, e.g. Newton
• We mix both at our convenience, e.g.:

tuple type (N F, m/s v) and selectors, like a.F, a.v

• Math encodes “types” in variable names, e.g. “F” is 
always force.

• PLs separate types and variables e.g. “Newton f”:
 PLs often use capitals for types, lower cases for variables
 Also common “f: Newton” and short “N f” 

• Math uses single letter variables (incl. Greek letters)
• PLs use self-explanatory names and use ASCII 

Software Engineering  |  RWTH Aachen176

Example: Electrical Circuits

• Circuit and chip design relies on binary electrical 
current.

• Logical AND is specified as 
 o = i1  i2

• Half adder is specified as 
 carry = a  b 
 2*carry + sum = a + b

• and implemented using an AND and two NOR

• R-S-Flip-Flop includes a feedback loop: 
 this allows to store a state (a bit)

&

≥1 ≥1b

a carry

sum

≥1

≥1

R

S Q

R-S-Flip-Flop (incl. feedback) 

Half adder:
logical AND

logical NOR

delay

CPF
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Example: SumUp as Software Function with State

• Building sum of arriving numbers:
 Data are discrete numbers and shall be summed up 
 Internal state: the sum built so far

 We use an internal variable
 ℕ s initialized with 0

 And as specification this invariant 
(also readable as update function):
 s‘ = x + s    y = s 

 It relates 
- input x 
- output y 
- the current internal state s
- and the next internal state s’

ℕ x ℕ y

SumUp

init ℕ s = 0
spec: s‘ = x + s

y = s 

In software: The internal state contains all relevant information about the history that is 
relevant to fulfill the function.

x: 2      3     0     6    1

s: 0      2     5     5    11

y: 0      2     5     5    11
time

CPF
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Example: Store as a Function to Store Material

• Input:
 Material arrives as discrete elements
 Store releases arrived material on Boolean request

 Internal state: the material stored so far
 List<Material> s    initialized with []

 And as (not fully complete) specification the invariant
 z=false  s‘ = s++x   y = 
 z=true  s‘≠[]  s‘ = rest(s)   y = first(s)

• Again next state s’ is related to current state s

• Extensions:
 Use part number to retrieve specific elements
 or pickup times 
 or bags (multisets) instead of storage lists

Material x

𝔹 z
Material y

Store

x:

z: f       f T     T f

y:
time

physical contact areas,
e.g. a door or a counter, valve, etc.

CPF
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Example: Dataflow and Material Flow in a Factory

• Companies, 
business processes,
production processes:
 Can be specified as functions

• Production takes time:
 Material is processed,
 Material is stored, etc.

• Company business processes
 Use history for prediction
 Use data to produce new data,

work directives, etc.

Factory ABC

Management Sales

Production

⟨⟨material〉〉
raw materials

⟨⟨material〉〉
products

⟨⟨data〉〉
output 

figures

⟨⟨data〉〉
output
figures

⟨⟨data〉〉          
production-

planning

⟨⟨data〉〉 orderbook

⟨⟨data〉〉 pricing

CPF

MBSE
5. Function as Modelling Paradigm
5.2. Underspecification

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen 

http://www.se-rwth.de/

Farbe!

Cyber-
Physical 
System

Energy

Material

Data

CPF



26.12.2023

31

Software Engineering  |  RWTH Aachen181

Example: Underspecified Communication Medium

• Medium describes an unreliable communication 
device:
 It may transport a signal (data) or may drop it
 This behavior is nondeterministic in nature.

 For simplicity: Medium does not replicate, alter or delay 
data, nor does it switch the order of data 

 Specification dout = din    dout = 

 Remarks: 
 the fully transmitting medium is included
 the disconnected medium is also included

Data din Data dout

Medium

din: 2      3     0     6    1

dout1: 3     0           1

dout4: 2                           
time

some
alternatively
possible
output streams

CPF

dout2: 6    1

dout3: 2      3     0     6    1
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The Underspecification Principle 

• Deterministic and fully specified relations are 
normally not achievable
 Delays happen
 Energy fluctuates
 Abstraction introduces lack of information

• Underspecification is the ability to describe the 
desired range of allowed behaviors 
(instead of a single, determined behavior)

• Advantages:
 Easier to specify
 Can be well combined with variant-building and 

methodical refinement

Controlled, explicit underspecification is the third universal specification principle

Cyber-
Physical 
System

Energy

Material

Data
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• Finite automata come with a rich theory 
and well-known techniques:

• Powerset construction derives a deterministic automaton

• Error completion

• 𝜖 - Transition elimination

• Equivalence checks (used e.g., by model checkers)

• Mapping of regular expression to automata
• Which includes various forms of automaton 

composition (∩, ∪, ¬, sequence .∘., Kleene closure  .∗ )

• Theory helps to define semantics as well to efficiently map 
the automaton to an executable implementation

Example Automata: 
Nondeterministic Automata

• First of all:
 Nondeterminism and underspecification are related 

(almost the same)

• To introduce nondeterminism, we adapt the 
automaton syntax to:
 Sy = (S,   I,   S0 ⊆ S,   F ⊆ S,   δ : S  I →(S) )
 Set of initial states S0
 Transition relation δ instead of function:

δ can now offer multiple transitions (|δ(s,i)| > 1 allowed)

• Semantics domain uses again the set(!) of words 
over I:

 𝑆𝑒𝑚 = 𝐼∗

• Semantics mapping: the set of accepted words with a 
path to a final state:

 𝑀 𝐴 =   𝑤 ∈ 𝐼∗   𝛿∗ S0, 𝑤 ∩  𝐹 ≠ ∅ }
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• Automata A and B are consistent: M(A) ∩ M(B)  ∅
 i.e. the do not specify conflicting properties of a component
 Can effectively be checked using an intersection automaton

• We recognize:
• Automaton theory demonstrates that:

• M(A) ∩ M(B)   =   M(A ∩ B) 
• i.e. composition ∩ of automata is conform to individual 

mapping and composition of semantics

• Set theory is an excellent vehicle to understand consistency, 
underspecification and refinement 

Example Automata: 
Automaton refinement and consistency

• Nondeterministic automata 
• Sy = (S,   I,   S0 ⊆ S,   F ⊆ S,   δ : S  I →(S) )
• 𝑆𝑒𝑚 = 𝐼∗

• 𝑀 𝐴 =   𝑤 ∈ 𝐼∗   𝛿∗ S0, 𝑤 ∩  𝐹 ≠ ∅}

• Automaton A is well defined: M(A)  ∅
 i.e. it accepts something
 Syntactic sufficient criterion: 
 ∃ 𝑠 ∈ 𝑆∗:   ∀𝑛: ∃𝑖:  𝑠௡ାଵ ∈ δ s୬, i ∧ 𝑠଴ ∈ 𝑆0 ∧ 𝑠௡ ∈ 𝐹

 Can effectively be checked using transitive closure

• Automaton A is refinement of B: M(A)  M(B)
 i.e. A is more deterministic than B
 Can effectively be checked using a simulation relation 

(see model checking)
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• Approximate equalities use “small” "unknowns" c:
• a = b +c

• Functional dependencies can be extended with “small” 
"unknown" functions c:
• f(x) = g(x) + c(x)

• Small unknowns are convenient, but the boundaries need to 
be clear, e.g.,
• Which c, c(x) is “small” enough?

• Or what properties does c(x) have? Continuous? 
What about its derivates (small changes only?)?

• Does a stochastic distribution over c make sense?

Example: Underspecification in Math

• The mathematical equation is a perfectly 
deterministic tool
 a = b

• Precisely determines a if b is given (and vice versa).
• Equation systems determine solutions …

• Non-injective mathematical operators allow several 
solutions:
 a3 =  b2

• Logical “or” introduces alternatives:
 a = b   a = 2*b

• Ranges can be specified:
 b  ≤ a    a ≤ 2*b 
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• The Interface of a Cyber-Physical System is defined 
through its function signature

Signature of Input and Output of a Function

• The signature of a function describes the forms of 
interactions of a system component with its 
environment.

• Interactions are broken down to streams of elements, 
which describe the time dependent flow and can be 
of the kinds 
 data, 
 energy or 
 material

• Interactions are organized through input and output 
channels.

Cyber-
Physical 
System

Energy

Material

Data

The concept of stream is our fourth universal specification and construction principle
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Interactions on Channels as Streams of Elements

• The signature of a function describes the forms of 
interactions of a system component with its 
environment.

• The signature of a function is defined by

 A set of channels
 Channels are directed as inputs or outputs

 A channel is of kind data, energy or material
 A channel has a type (e.g., data type, energy or material 

type) 

 The streams of elements are time dependent, e.g.,
 Continuous (or piecewise continuous) or
 discrete: i.e. event based

a ad b b ... time

Cyber-
Physical 
System

Energy

Material

Data
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Behavior of a System

• The behavior of a system is defined as a function or 
relation on the streams of element according defined 
the system signature

 Given the channels and their kinds a relation between 
input and output can be defined

 Time is directed and time warp doesn’t exist, i.e.,
output of a channel depends only on 
 the history of the input
 and the (almost) current input

 A function may have state to 
 remember its own history (i.e., data) or
 to store products (i.e., material or energy).

Cyber-
Physical 
System

Energy

Material

Data
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All Variants of Communication Models (Streams) and their Timing

Underlying 
Topology

Kind of Stream Mathematical 
Definition

discrete event stream M

discrete timed event stream M

discrete time slice stream ℕ M*      ( M)

discrete time-synchronous stream ℕ M

discrete time-synchronous 
optional stream

ℕ M~ 

= (M ∪ {~})

discrete signal stream ℕ (M)

dense1 hybrid stream ℝ+ M

dense dense signal stream ℝ+ (M)

superdense super dense stream ℝ+ M*

progress

ℕ

ℝ+

ℝ+

ℕ = natural numbers;  ℝ+ = positive reals;  M = messages;  (M) = powerset over M;   M= discrete streams (i.e. finite and infinite lists) over M 
1 dense streams are typically continuous almost everywhere
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• Formally F relates its streams M

(i.e. one of M , M , ℕ  M* , … ℝ+  M) of 
 input channels          I1, I2, … In
 and output channels O1, O2, … On

• as set of mathematical functions:
 F    I1× I2 × … × In O1

× O2
× … × On



that obey timing restrictions

Model Based System Specification - Functional View

• A function F specifying a CPS component has a 
complex signature:

 Many channels : ingoing  and outgoing
 Channels carry different kinds of elements
 Flows may be discrete, dense, and even superdense

 Time is relevant and it is directed:
 Reaction is not really immediate (but can be very quick)
 No time warp, no undo of emitted reactions

 Component may have 
 delay in reaction and 
 store information, energy or material for future 

reactions: components have encapsulated state

 Underspecification allows many possible behaviors

F: CPS
Function
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Model-Based System Specification – Function and Geometry View

• A CPS system (and equally a CPS component) are 
defined by a
 functional view F and a
 geometric view G

• A geometry defines an area in space that the CPS 
takes
 Physical dynamics include a behavior over time, possibly 

dependent on input channels (called interactions)
 Physical effective surface acts as interface of the 

geometry (Dt: “Wirkfläche”) 
 Material properties are internal, only the surface is visible

• Underspecification as development principle

F: CPS
Function

& 
G: CPS 

Geometry

A CPS is described by a functional and a geometric view. Both share their CPS interface.
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Stereotypes for Components and Interaction Channels 

• We in this course define the following:

• for functions
 «component» machinery, …
 «system» machinery that is “complete”

 «being» humans, …

• for function channels:
 «material» elements, compounds, alloys, …
 «fluid» continuously flowing material,

typically not countable 
(water, gas, sand)

 «item» discrete physical items, e.g. cars
 «energy» types of energy

 «data» for data objects, basic data (e.g. int)
 «event» for discrete data that triggers 

behavior
 «signal» for continuously flowing data

• Principle picture:

• is refined to: 

Cyber-
Physical 
System

Energy

Material

Data

«component»
Cyber-

Physical
System

CPF

«energy»

«fluid»

«signal»

«item»

«energy»

«fluid»

«signal»

«item»

«data» «data»
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• 1:  The function concept is a universal specification and construction principle
  Functions are a well-known mathematical construct that allow us to model system functionality precisely
 Functions (and related math structures, such as continuous or discrete time, abstract data types) are the connection 

between systems thinking and mathematical foundations.

• 2: Abstraction with dedicated models to master complexity is the second universal principle.

• 3:  Controlled, explicit underspecification is the third universal specification principle
  Underspecification allows us to model absence of information or uncertainty in analysis, variability of the products, 

degrees of freedom when customizing a component and also behavioral nondeterminism that occurs during system 
operation.

• 4: The concept of stream is our fourth universal specification and construction principle
  Streams allow to describe the “flow” of elements (material, data, data) through input and output interfaces over time. 

Dense, even continuous, or discrete streams allow to model all forms of possible behavior of a function.

Summary: Universal Construction Principles 1-3 (more are coming up):
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Function-based Universal Specification and Construction Principles

1. The function paradigm is the foundation
 Clear boundaries, clear input/ouput signatures

2. Abstraction with dedicated models to master 
complexity is the second universal principle
 Explicit, abstract models focusing on dedicated aspects

3. Controlled, explicit underspecification
 abstraction, variability, ability to describe the desired 

range of allowed behaviors

4. The concept of stream
 as mathematically precise, time dependent model of 

input/output behavior

… more coming

«component»
Cyber-

Physical
System

CPF

«energy»

«fluid»

«signal»

«item»

«energy»

«fluid»

«signal»

«item»

«data» «data»
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Summary defined in a Concept Model

Function

Signature

• Functions embody a signature consisting of typed channels

Concept
model

Channel

Kind:
«data», … Type

Stream

Continuous
Stream

Discrete
Stream

…

described by

has

inputs, outputs

has

characterizes

*
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Waiting for
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i:crate /

Filling

Crate Inside

Loading Bottles
/ o:crate

button:true /

b:bottle /

Statechart
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Specifying Function Behavior with Statecharts

• A cyber-physical function
 needs a behavior specification
 behavior maps input flows to output flows

• Statecharts describe discrete behavior 
 event-driven sequence 
 finite state space
 discrete transitions caused by external events

induce state changes and event emission

• Observations:
 Data as well as materialized things are discrete
 Energy and fluids are not

• How and when to use Statecharts?
• How to interpret a Statechart in CPS?

Cyber-
Physical 
System

Energy

Material

Data

CPF

Energy

Material

Data

behavior
specified by
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• Goal is the description of 
object or component behavior 
based on their internal state

• Statecharts extend automata theory:
 hierarchical states,
 actions in transitions and states, 
 explicit logic formulae as conditions, ...

• History of Statecharts
 Statecharts introduced by David Harel in 1987 
 incorporated in many modeling languages
 many variants developed 
 part of the UML from the beginning 

Statecharts

Waiting for
Crate

i:crate /

Filling

Crate Inside

Loading Bottles
/ o:crate

button:true /

b:bottle /

Statechart
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• Statechart for the “process” of an auction:

Example: Statecharts in Business

AuctionReady
start()

AuctionOpen

AuctionFinished

Auction-
RegOpen

Auction-
Extended

finish()

startExtension()

marker for Statecharts

state

hierarchically decomposed state

transition with
method call

marker for start and end states

state name

Statechart
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Example: RS-Flipflop as Statechart

• The functionality of an RS flip-flop circuit
 Modelled by its internal state

• Internal state = the stored bit

• Observations:
 Processes two (synchronous) inputs at once
 Start state initially unknown

 Output Q only depends on internal state 
(= Moore machine)
 this introduces delay in its reaction

 Statechart is incomplete:
 R:1, S:1 is not considered

S

R

Q

Q

symbolic 
picture

RS-Flipflop

𝔹:   S

𝔹:   R 𝔹:   Q

CPF

Statechart

Legend: 
10 / 1 
is shortcut 
for  
R:1, S:0  / Q:1

10 / 1

True (1)

False (0)

01 / 0

01 / 1
00 / 1

00 / 0
10 / 0
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Example: Car Wash

• A car wash 
 one car at a time
 washing only if chip is entered

• Observations: 
 real physical things come in and out

(cars, chips)

 Functionality of “cleaning” is not actually modelled in its 
behavior  (i.e. how to mathematically describe a car “is 
clean”), but the process around it

 Abstracts away from many details, which?

Statechart

Car-
WashChip c 

CPF

washingempty

Uncleaned 
Car inside

Car
cleaned

i:Car / c:Chip /

 // o:Car

i

o

car arrives

car leaves
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Example: Car Wash – more complete

• A car wash 
 one car at a time
 washing only if chip is entered

• Some additional behaviors:
 Car leaves without wash
 2nd chip is used to wash same car twice

• Still missing:
 Emergencies
 Washing in steps …
 Wrong chip
 Chip arrives without a car

• Refinement: Adding behavior, where nothing was 
said before

Statechart

Car-
WashChip c 

CPF

washingempty

Uncleaned 
Car inside

Car
cleaned

i:Car / c:Chip /

 // o:Car

i

o

c:Chip /
/ o:Car
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• Recognizing automaton  (S,I,δ,s0,F) has
• (also: nondeterministic, alphabetical Rabin-Scott 

Machine (RSA)) 

 Finite set of states S
 Input alphabet I
 Set of initial states s0 S
 Set of final states F  S
 Transition relation δ  S  I  S

where
  represents the non-existent input characters in 

spontaneous transitions
 I = I  {}

 All sets S, I, s0, F are non-empty and finite

Recognizing Automata

recognizing
automaton

m n

0

1

01

marker for 
initial state

marker for 
final state

transition with 
input symbol 0

initial state

1

2

3

4

5

6

7

8

11

12

13

14

15

16

17

10

9
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Examples of Recognizing Automata

m n

,

0-9

p q

0-9

0-90-9

incomplete transition relation, because
comma is not accepted in this state

m n

,

p q

0-9

0-90-9

ε

5

ε-transition

multiple
transitions

non-deterministic
because of ε resp. 5

0-9

recognizing
automaton

recognizing
automaton
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• Finite automata come with a rich theory 
and well-known techniques:

• Powerset construction derives a deterministic automaton

• Error completion

• 𝜖 - Transition elimination

• Equivalence checks (used e.g., by model checkers)

• Mapping of regular expression to automata
• Which includes various forms of automaton 

composition (∩, ∪, ¬, sequence .∘., Kleene closure  .∗ )

• Theory helps to define semantics as well to efficiently map 
the automaton to an executable implementation

Example Automata: 
Nondeterministic Automata

• First of all:
 Nondeterminism and underspecification are related 

(almost the same)

• To introduce nondeterminism, we adapt the 
automaton syntax to:
 Sy = (S,   I,   S0 ⊆ S,   F ⊆ S,   δ : S  I →(S) )
 Set of initial states S0
 Transition relation δ instead of function:

δ can now offer multiple transitions (|δ(s,i)| > 1 allowed)

• Semantics domain uses again the set(!) of words 
over I:

 𝑆𝑒𝑚 = 𝐼∗

• Semantics mapping: the set of accepted words with a 
path to a final state:

 𝑀 𝐴 =   𝑤 ∈ 𝐼∗   𝛿∗ S0, 𝑤 ∩  𝐹 ≠ ∅ }
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• Automata A and B are consistent: M(A) ∩ M(B)  ∅
 I.e. the do not specify conflicting properties of a component
 Can effectively be checked using an intersection automaton

• We recognize:
• Automaton theory demonstrates that:

• M(A) ∩ M(B)   =   M(A ∩ B) 
• I.e. composition ∩ of automata is conform to individual 

mapping and composition of semantics

Example Automata: 
Automaton refinement and consistency

• Nondeterministic automata 
• Sy = (S,   I,   S0 ⊆ S,   F ⊆ S,   δ : S  I →(S) )
• 𝑆𝑒𝑚 = 𝐼∗

• 𝑀 𝐴 =   𝑤 ∈ 𝐼∗   𝛿∗ S0, 𝑤 ∩  𝐹 ≠ ; }

• Automaton A is well defined: M(A)  ∅
 I.e., it accepts something
 Syntactic sufficient criterion: 
 ∃ 𝑠 ∈ 𝑆∗:   ∀𝑛: ∃𝑖:  𝑠௡ାଵ ∈ δ s୬, i ∧ 𝑠଴ ∈ 𝑆0 ∧ 𝑠௡ ∈ 𝐹

 Can effectively be checked using transitive closure

• Automaton A is refinement of B: M(A)  M(B)
 I.e. A is more deterministic than B
 Can effectively be checked using a simulation relation 

(see model checking)
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Readiness-to-Fire, Semantics

• A transition is ready to fire if the system is in the 
source state and 
 the input character arrived and or the 
 transition does not require an input character 

(i.e., it is spontaneous).

• The semantics of a recognizing automaton is the set 
of inputs (words over E), for which there exists a path 
from a start state to a final state

• But: pure recognition is too weak for behavioral 
description
 therefore, extension of the machines to describe output

• Mealy machines have output on transitions
• Moore machines have output on states RS-Flipflop

𝔹:   S

𝔹:   R 𝔹:   Q

CPF

Statechart

Legend: 
10 / 1 
is shortcut 
for  
R:1, S:0  / Q:1

10 / 1

True (1)

False (0)

01 / 0

01 / 1
00 / 1

00 / 0
10 / 0
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Mealy Machine

• A Mealy machine 
• (S,   I,  O, s0 ⊆ S,   F ⊆ S,   δ : S  I →(S × O) )
• includes recognition automaton (S, I, s0, F, δ)
• and new:
 output alphabet O
 and transition relation δ is extended with output 

• Semantics of Mealy machine is a relation between 
input and output words (I*  O*):
 the “behavior” of the automaton that is exposed to the 

outside 

• Mealy machines can describe functions on discrete 
in/ouputs

RS-Flipflop

𝔹:   S

𝔹:   R 𝔹:   Q

CPF

Statechart

Legend: 
10 / 1 
is shortcut 
for  
R:1, S:0  / Q:1

10 / 1

True (1)

False (0)

01 / 0

01 / 1
00 / 1

00 / 0
10 / 0
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Waiting for
Crate

i:crate /

Filling

Crate Inside

Loading Bottles
/ o:crate

button:true /

b:bottle /

Statechart
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Example Automata: 
Semantics Definition using Math

• Mealy machines are a well-studied theory
 Deterministic, completion, minimization, powerfulness, 

etc.

• Application in practice requires an interpretation in 
the real world
 What is a state?
 What is an input symbol?
 What is output?

• Range of possible interpretations
 ASCII characters (e.g., in parsing)
 Method calls (in object-oriented software)
 Signals (e.g., in communicating distributed systems)
 Physical things
 Electrical states (0, 1)

ASCII
chars

Signals,
Things

interpretation of 
inputs I in the 
software world
And the real world

M: Sy  Sem Semantic 
domain
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Application of Automata Theory in Object Oriented Modeling

• Possible interpretations of states, transitions in OO?

 State space defined by attributes of an object is in 
general infinite vs. finite set of states in the Mealy 
Automaton

 State change through method call, asynchronous 
message via CORBA, timeout, ...?

 What is the output?

 What is a spontaneous transition in OO?

 Initial and final states in OO?

ASCII
chars

Signals,
Things

interpretation of 
inputs I in the 
software world
And the real world

M: Sy  Sem Semantic 
domain
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UML Interpretation of Statecharts in Software

• State of the automaton = set of states of the object

• Initial state = set of object states that occur 
immediately after construction (new ...)

• Final state does not matter, because in Java 
garbage collection “terminates” objects

• Input characters = method call including arguments

• Output character = result of a method execution
 Includes attribute changes, other method calls

• Transition = execution of a method body

• Distinction between diagram state and object state!

ASCII
chars

Signals

interpretation of 
inputs I in the software world

M: Sy  Sem Semantic 
domain

Inactive
switchOn()

Producing

Error

Molding

Refill
Material

[operatingTemp > 150]

emergencyOff()

Statechart

[empty][!empty]
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SysML Interpretation of Statecharts in Cyber-Physical Systems

• State of the automaton = 
equivalence class of states of the component

• Initial state = component states that occur at start

• Final state normally not applicable to physical systems

• Input = incoming discrete things and signals in a 
machine

• Output = modified things as well as computed answers

• Transition = operation of the CPS transforming the input 
to an adequate output using and adapting internal states

• Statecharts are useful in many domains. But the 
following the examples usually belong only to one 
domain. Let’s keep this in mind!

ASCII
chars

Signals,
Things

interpretation of 
inputs I in the real world

M: Sy  Sem Semantic 
domain
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Relationship between Diagram and Component States

animated

bar (1)

set of component states 
assigned to m

foo(4)

foo(3)

foo(4)
set of component states 

assigned to n

interpretation of diagram elements

diagram: all elements are 
finite

m n

foo
bar

bar

foo

representation of a portion of 
the state set of a component 
and some of the typically 
infinite many transitions

Mealy
machine
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• If two transitions are ready to fire: 
Then the user of the system knows, that one of the transitions will be taken.

• Decision which one can 
a) Depend on missing details of the model states

(= N. Det. by abstraction: underspecification)
a) Left up to the developer 

(= N. Det. as a draft of freedom: underspecification)
b) Determined at runtime (= N.Det. in the system)

• Decision may be left to the developer or system
 This makes no difference to the user!

• Clarification of the interpretation:
 N. Det. of the automaton as a concept for underspecification!

• Principle of underspecification: If no information is given, nothing is known!

Non-Determinism (N.Det.) in the State Machine

x / 2

p

q

r

x / 1 Mealy
machine
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•  - transitions are “spontaneous” transitions 

• Possible interpretations in the system/world
1. timer has expired and causes transition
2. automaton is incomplete: a message leading to this transition was not modeled, but effect is visible due to 

change of state
3. the transition is a consequence of a previous transition and is executed automatically by the system.

• Notes on the variants
1. Requires concepts to express this in an underlying programming language
2. Allows for abstraction, but prevents code generation
3. Allows to break down long actions in sequences, branches and even iteration of a method body into 

individual steps
 notational comfort

Epsilon Transitions

 / 2
p

q

r

x / 1 Mealy
machine
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• In the current state “p” no transition is ready to fire for input “y” 

• Possible interpretations
1. ignore: do not execute any action, do not change any state
2. chaos: arbitrary reaction allows change to arbitrary state and an arbitrary action
3. error state is entered (and left only through return message)
4. error message as the Smalltalk “message not understood”, but no change of state

• 1, 3, and 4 are suitable for implementation: code generator

• Option 2 useful for Statecharts in a specification
 Chaos allows robust implementation by subsequent design decisions (adding of transitions)
 Chaos = no knowledge = underspecification

Incompleteness

p

q
x / 1 Mealy-

Automat
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• Implicit assumptions for data automata
 Incoming stimuli are method calls and thus are processed sequentially
 No parallelism in the individual component or the transition 

• Programming languages such as Java allow parallelism and recursion on methods 
• Statecharts of the UML can not represent recursion adequately.

• To ensure correctness: Java code is synchronized and
• Assume that internally called methods (such as bar ()) are “helper methods”, which do not use or affect the 

states

Expressiveness

recursive call

Class

foo (int x)
bar (int y)

int a
int b
int c

P Q

foo(x) /  a=a+x;    bar(a);     c=a+b

S T

bar(y) /  b=b+y

CD Automaton
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Waiting for
Crate

i:crate /

Filling

Crate Inside

Loading Bottles
/ o:crate

button:true /

b:bottle /

Statechart
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• Function:
 Load bottles into a crate

• Stimuli describe the external triggers that 
interact with the system via input channels
 Crates through channel i
 Bottles through channel bo
 Binary signal of a pushed button in channel button

• Internal states of the inserted crate
 ℕ bottleCount; // current bottle count
 ℕ capacity; // max. bottle count
 kg weight; // weight of the crate

• (Statechart is refined in forthcoming slides)

Running Example: Function of a Crate Refilling System

Waiting for
Crate

i:crate /

Filling

Crate Inside

Loading Bottles
/ o:crate

button:true /

Statechart
CrateRefilling

bo:b /

CrateRefillingBottle bo

CPF
Crate i

𝔹 lamp
𝔹 button

Crate o

type channel
name

value

1

2

3

4

5

6

7

8

11

12

13

14

15

16

17

10

9
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States

• States have
 State invariants
 entry/exit and do actions and conditions
 Substates (see later)

state with state name

[crate.weight < 17,5 kg]

entry /                  [crate.bottleCount == 0]
exit   / lamp:false [crate.bottleCount == crate.capacity]

do / lamp:true

state invariant

entry- and exit-actions 
here modelled with
conditions

the Statechart belongs 
to a crate filling system

...

Statechart is
incompleteLoading Bottles

Statechart
CrateRefilling

do activity is  executed “permanently”
here: while loading bottles, activate 
the control lamp
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State Invariants

• State invariant is formulated over the attributes of the component (and potentially dependent components)

• Invariant connects the diagram state and component states

• Different states may have disjoint invariants, but is is not required in general!

Waiting for Crate

[crate.weight < 17,5 kg]

Loading Bottles

[crate.bottleCount == 0]

Crate Inside

no state invariant given state invariant using 
an attribute

state invariant ensuring 
operability of the system

Statechart
...

Software Engineering  |  RWTH Aachen225

• If state invariants are not disjoint or even missing, 
then state machines will be “control states”

 for implementation, an additional attribute is needed to 
distinguish them

• If invariants are disjoint, this is unnecessary: 
automaton states can be considered “data states”

 state-defining invariants, “data” patterns

• Marking the states in the automaton by stereotypes:

• Usually not to be mixed in the same diagram!

• Control states can be transformed into data states, 
for example by introducing an attribute

 This is a preparation step for code generation and can be 
automated

Data States and Control States

«controlstate»
Statename

«datastate»
Statename

[invariantP]

Statechart
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• Normally invariants characterize object states:

 persons with rating >= 4500 can be VIP 
(but do not need to be!)

• «statedefining» state invariants define state:

 persons are in state “BadPerson” if and only if rating <0

• «statedefining» state invariants must be disjoint.

Invariant Defines the Data State

property 
characterizes 
the state

property defines 
the state

[rating >= 4500]

VIP-Person

NormalPerson

«statedefining»
[rating < 0]

BadPerson

...

Statechart
Person
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Filling

[crate.capacity == 20]

©

Crate Inside

[crate.bottleCount == 0]

Loading Bottles

[crate.weight < 17,5 kg]

Hierarchical States

• Hierarchy for structured modelling of states

 Substates share characteristics of enclosing state 
(invariants, actions, transitions)

• Remark: UML/P offers “or-decomposition” only 

 “or-decomposition” = component is exactly in one 
substate

 “and-decomposition” would enforce a cross-product 
semantics; this can be achived using several components

marker for completeness 
of  the representation of 
all substates (alt: “…“)

inner state (substate)

Statechart
...
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Semantics of Hierarchical States

• Explanation of semantics by mapping new concepts back on already familiar concepts:

 E.g. states hierarchy transformed to flat states:

equivalent
Statecharts

Crate Inside

[crate.bottleCount == 0 
&& crate.capacity == 20]

Filling
[crate.capacity == 20]

©

Crate Inside
[crate.bottleCount == 0]

Loading Bottles
[crate.weight < 17,5 kg]

Loading Bottles

[crate.weight < 17,5 kg 
&& crate.capacity == 20]

hierarchy  can be introduced by grouping states,
but can also be expanded.



symbol for the equivalence
(semantic equality) of

two diagrams

equivalent 
states
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Initial and Final States

• Initial state: component starts in this state

• Final state: component may terminate activities/life 
here (may, not must!)

• A state can be initial and final

• Markers are not states

• Markers in substates have a different meaning
(→ next section)

marker for
initial state

both initial 
and final state

marker for
final state

Waiting for Crate

Statechart
...
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Summarizing Glossary for States

• State (syn. diagram state)
 Represents a subset of the possible component states

• Initial state 
 Marks the beginning of the lifecycle

• Final state
 Describes the component in this state has fulfilled its duty 

and is no longer needed. 

• Nested state (syn. substate) 
 Is part of a hierarchically composed state

• State invariant
 Is a condition (e.g., in OCL logic) that characterizes the states assigned to a state diagram
 State invariants of different states may generally overlap (if not state-defining)

Waiting for
Crate

i:crate /

Filling

Crate Inside

Loading Bottles
/ o:crate

button:true /

b:bottle /

Statechart
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Waiting for
Crate

i:crate /

Filling

Crate Inside

Loading Bottles
/ o:crate

button:true /

b:bottle /

Statechart
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Transitions

• One transition describes a portion of the component 
behavior

• A transition has
 Source state
 Precondition 
 Stimulus
 OO style: a method stimulus()
 Signal style:   a digital value, e.g.,  3, “Theo”
 “Thing” style:  a real thing, e.g., the real car

 Action (→ next section) 
 Postcondition 
 Target state

• Stimulus val over a channel “c” is denoted as  c:val
 The type of val is defined externally 

Loading Bottles

[crate.bottleCount < crate.capacity]

bo:b / 

crate.add(b);

[crate.bottleCount == crate.bottleCount@pre +1]

precondition

stimulus (i.e. value b 
in channel bo)

action statement

postcondition
(action condition)

Statechart
WaterDispensing

...

here: a loop
transition

Relates previous state
(@pre) with upcoming
next state
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Preconditions in Transitions

• Readiness to fire is determined by (a) precondition of the transition and (b) state invariant
• State invariant can be explicated:

equivalent
StatechartsSuperstate

[condition1]

Substate
[condition2]

TargetState

[precondition && condition1 && condition2]
stimulus()



the state invariant of the source 
state (and its super-states) may 

be added or omitted

Superstate
[condition1]

Substate
[condition2]

[precondition]
stimulus()

TargetState
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Superstate as a Source

• If the transition source is a superstate, the transition starts from each substate:

• Special cases: Substates that have initial/final markers

SuperState

TargetState
SubState1

SubState2

© SuperState

TargetState

SubState1

SubState2

©

label

label

label

if there are identical transitions from all substates
these can be replaced by a transition from the superstate, 
given the list of substates is complete ( © )

equivalent
Statecharts
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• Stimuli types are denoted as shown:

Types of Stimuli in Transitions

• General variants of stimuli:

 Physical thing is received

 Message is received (over a communication channel)

 Method call is made 

 Result of a return statement is returned 
(=answer/solution of a method call)

 Exception (i.e., an error) is caught, or 

 Transition occurs spontaneously.

• If several input channels are present, the channel 
name is added to the input stimulus
 c:stimulus()             c:3  c:person

item thing is arriving over a 
physical channel

value 

catching and manipulating
occurred exception 

ε

a simple value

return(result)
reception of a result (due 
to a previously performed 
method call)

methodname(arguments) method call and 
asynchronous message -
transmission are not 
distinguished here

Exception(arguments)

spontaneous transition, 
e.g. as local
continuation of an action
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Overlapping Readiness-to-Fire

• shows up as non-determinism in the Statechart

• Is interpreted as underspecification
 allows developers (during design) or physical device (during operation) to choose 

• Examples

stimulus()

stimulus()

Statechart

stimulus()

stimulus()

Statechart
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Prioritization of Transitions

• Overlapping can be resolved by prioritizing the transitions
• Statechart variants prioritize internal or external transitions
• UML/P allows to choose by means of stereotypes «prio:inner» and «prio:outer»

«prio:inner» 
Statechart

«prio:outer» 
Statechart

stimulus()

stimulus()

© stimulus()

stimulus()

©

stimulus()

stimulus()

©
stimulus()

stimulus()

©





defines  which transition 
has higher priority

Statechart

Statechart
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Incomplete Statechart

• i.e. there is no transition ready to fire:
• We remember the principle of underspecification: where no statement is given, nothing is known!
• However, stereotypes can be used
 «error» marks a special “failure” state, which is then taken as target
 «exception» marks a special state in which emerging exceptions are caught

 «completion:ignore» means stimulus will be ignored
 «completion:chaos» means stimulus can be handled arbitrarily 

(default, concurs with the full underspecification principle) 

«completion:ignore» 
Statechart 

«completion:chaos» 
Statechart
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• Precondition of the transition

 Logic condition that must hold for the attribute values and 
for the stimulus

• Postcondition of the transition (syn. action condition)

 Logic condition describes properties of the reaction

Definitions (related to Transitions)

• Stimulus

 Caused by other components, leads to firing a transition

 Stimulus types: external call of functions, RPC, receiving 
asynchronously sent message, or timeout

• Transition

 From source state to target state, contains a stimulus and 
an action as response 

 Logic constraints specify the transition more precisely

• Readiness to Fire

 Transition is ready to fire if and only if the component in 
the source state of the transition and stimulus are correct 
and the precondition (of the transition) applies

 If several transitions are ready to fire, the Statechart is 
nondeterministic and chosen transition is not determined
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Quality of a Statechart Model

• Quality is defined relative to a purpose:
 Does it fulfill it’s purpose?

• A) Does it model the correct behavior?

• B) Details:
 B1) Is it sufficiently detailed?
 B2) Is it not overly detailed / constraining?
 B3) Complete, determined?

• C) Is it presented well?
 C1) Readable?
 C2) Well arranged?
 C3) e.g. does it exhibit “main flows” well

Statechart

washingempty

Uncleaned 
Car inside

Car
cleaned

i:Car / c:Chip /

 // o:Car

c:Chip /
/ o:Car

10 / 1

True (1)

False (0)

01 / 0

01 / 1
00 / 1

00 / 0
10 / 0

Waiting for
Crate

i:crate /

Filling

Crate Inside

Loading Bottles
/ o:crate

button:true /

b:bottle /



26.12.2023

41

MBSE
6. Discrete Behavior Modeling with Statecharts
6.6. Actions

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen 

http://www.se-rwth.de/

Farbe!

Waiting for
Crate

i:crate /

Filling

Crate Inside

Loading Bottles
/ o:crate

button:true /

b:bottle /

Statechart
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Action in a Transition

• Action in the Statechart
 corresponds to output of the Mealy machine

• Effects:
 change component states 
 Send messages / call methods / emit things

• Action representation in two forms:

 Operational: 
 Specific instructions e.g., in Java
 Emission of message / thing over a channel

(similar to a programming statement):   
c:Message          c:Person

 Descriptive: 
 Action condition = post-condition of thetransition
 Effect defined by math or a logic, e.g. OCL

Loading Bottles

[crate.bottleCount < crate.capacity]

bo:b / 

crate.add(b);

[crate.bottleCount == crate.bottleCount@pre +1]

precondition

stimulus (i.e. value b 
in channel bo)

action statement

postcondition
(action condition)

Statechart
WaterDispensing

...

here: a loop
transition

Relates previous state
(@pre) with upcoming
next state
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Actions and Activities in States

• entry action: executed when entering the state
 the condition holds when entering the state (resp. after the execution of the entry action)

• exit action: when leaving
 the condition holds when leaving the state (resp. after the execution of the exit action)

• do activity: executed permanently / regularly while in the state

• Entry and exit actions extend Statecharts to Moore machines with output related to states

[crate.weight < 17.5 kg]

entry /                     [crate.bottleCount == 0]
exit /   lamp:false [crate.bottleCount == crate.capacity]

do /    lamp:true

entry- and exit-actions 
(here defined
using conditions)

Loading Bottles

do activity is  executed “permanently” 
(here: emitting “true” on the lamp port)

Statechart
CrateRefilling
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Semantics of Entry / Exit Actions

• Moore machine can be transformed into Mealy machine (a result from theory)
 Through moving the state actions into adjacent transitions

• Simple case for operational activities: 
 Sequential composition (with “ ; ”)


stimulus() /

actionA ;
actionM ;
actionB

SourceStateA

TargetStateB

SourceStateA
exit / actionA

stimulus() /
actionM

TargetStateB
entry / actionB

operationally formulated entry and exit 
actions may be sequentially executed in 
transitions

equivalent
Statecharts

...
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Interaction of the Entry / Exit Actions in the Hierarchy: Operational 

• Operational entry and exit actions are executed in the order of leaving and entering states
 exit: from inside to outside
 entry: from outside to inside

equivalent
Statecharts

...
SuperStateA

exit / actionSupA 2

SourceStateA
exit / actionA 1

SuperStateB

entry / actionSupB 4

TargetStateB
entry / actionB 5

SuperStateA

SourceStateA

SuperStateB

TargetStateB

stimulus() /
actionM 3

stimulus() /
actionA;
actionSupA;
actionM;
actionSupB;
actionB

1
2
3
4
5


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• A transition can be specified inside a state:
 inner transitions form an alternative representation for a 

loop of this state:

• Condition: state has no entry/exit actions, because
 entry or exit actions of the state are not executed on the 

left side, but are executed on the right one  
 alternative?

Inner Transition

method() / 
action

method() / action

StateA


StateA

short form

equivalent
Statecharts
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• Inner transitions can be transformed to transitions of 
the (only) substate, which is introduced for this 
purpose:
 this ensures that entry/exit actions in inner transitions are 

not executed.

Inner Transition

equivalent
Statecharts

SubState

method() / 
action



inner transitions are interpreted
as transitions of a substate

entry / entryActionA
exit / exitActionA

StateA

entry / entryActionA
exit / exitActionA
method() / action

StateA ©
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Do-Activity

• Regular execution of the do-activity of a state means that 
 external time-driven mechanism triggers the contained action regularly

• A proposal(!) for an implementation using timer and internal transitions in software:
 (or using a physical effect, e.g. bell ringing)


entry / timer.set(self,delay)
exit / timer.stop(self)
timeout() / action; timer.set(self,delay)

a do-activity is regularly executed by a timer

StateA
do / action

StateA

equivalent
Statecharts

...
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• Nondeterminism in a Statechart

 If a situation occurs where several alternative transitions 
are ready-to-fire, then behavior of the component is 
underspecified

 and also: if no explicit transition is given full 
underspecification is assumed 

Definitions for Actions

• Action

 Is a change of the state of a component 
(and its dependent environment )

 Often described by operational code (such as Java), or 
specifying signals and a sequence of emitted things by a 
logic condition

• Entry action 

 Belongs to a state and is executed (or evaluated in case 
of a condition) when the state is entered

• Exit action

 Belongs to a state and is executed (or evaluated in case 
of a condition) when the state is left

• Do-activity

 Is a permanently continuing activity of a state, or 

 is executed regularly (e.g., by means of a timer)
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Filling

Crate Inside

Loading Bottles
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Statechart
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Example Automata Syntax: 
Model Representation by Graphics, Text and Math

• Textual in ASCII / UTF-8:

automaton Simple {
state 1 <<initial>>;
state 2 <<final>>;
1 - a > 2;
2 - b > 1;

}

1
2
3
4
5
6

• Mathematical:

Tuple (S, I, 1, {2}, 𝛿)
 Set of states S = {1,2}
 Set of inputs I = {a, b}
 Initial state 1 ∈ S
 Final states {2} ⊆ S
 Transition function 𝛿 : S  I → S

 with 𝛿 1, 𝑎 = 2;   𝛿 2, 𝑏 = 1

1
2
3
4
5
6
7

• typically restrictions apply 
(context conditions)

• more variants: XML/JSON-encoding, 
Java-encoding (State Pattern), …

• Tabular:

source
target 1 2

final

initial     1 a

2 b

ab

1

2

Automaton

• Graphical / diagrammatic:
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Various Uses of Statecharts for Software and Systems

Statecharts can be used for different viewpoints:

1. Representation of the life cycle of a component
2. Implementation description of a method / 

operation (in software only) 
3. Interface description of the useful operation modi
4. Abstract description of requirements on the state 

space
5. Representation of allowed sequences of stimuli 

occurrences (input signals/arriving things)
6. Characterization of the possible or allowed 

behaviors of a component
7. Connection between state and behavior of a 

component

ASCII
chars

Signals,
Things

interpretation of inputs/outputs 
in the real world

M: Sy  Sem Semantic 
domain
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Statechart as Description of Allowed Inputs: Interface only

• Not all combinations and sequences of inputs allowed
• Example: Input RS-flip-flop circuits do not operate 

well if R:1 and S:1
 (A) describes the RS-flipflop states and behavior
 (B) describes the “operation modes” 

• Statechart (B) does not describe output (even so it 
could partially) 

S

R

Q

digital input / output 
in form: SR / Q

(B) RS-flipflop usage
(interface) model

Statechart

Hold

10

Illegal

01 

11

11

10

01

0110 

00

00  

00

Set

Reset

10 / 0

Statechart
True (1)

False (0)

01 / 1

00 /  0
01 /  0

00 /  1
10 /  1

(A) RS-flipflop behavior model
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• A number of variations for Statecharts allows different 
areas of application:

 Machine behavior

 Life cycles

 Test sequences

• Much depends on the 
interpretation 
of a Statechart within 
the system under 
development

Summary Statecharts

• Statecharts are an extension of Mealy and Moore 
machines

 for practical usability

• Statecharts build a powerful form to define discrete 
behavior based on a discrete state space

• The combination with pieces of code for actions, or 
with logic conditions makes Statecharts fully 
descriptive and comfortable

• Used in various phases of software and systems 
development: Analysis, design, implementation

• Extensions with differential equations integrate 
modelling styles from hybrid automata

MBSE
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6B.1. Semantics Revisited
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Specifying Function Behavior with Statecharts

• A cyber-physical function
 needs a behavior specification
 behavior maps input flows to output flows

• Statecharts describe discrete behavior 
 event-driven sequence 
 finite state space
 discrete transitions caused by external events

induce state changes and event emission

• How and when to use Statecharts?
• How to interpret a Statechart in CPS?

• What to do with a Statechart?

Cyber-
Physical 
System

Energy

Material

Data

CPF

Energy

Material

Data

behavior
specified by

Rep.
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UML Interpretation of Statecharts in Software

• State of the automaton = set of states of the object

• Initial state = set of object states that occur 
immediately after construction (new ...)

• Final state does not matter, because garbage 
collection in Java “terminates” objects

• Input characters = method call including arguments

• Output character = result of a method execution
 Includes attribute changes, other method calls

• Transition = execution of a method body

• Distinction between state diagram and object state!

ASCII
chars

Signals

interpretation of 
inputs I in the software world

M: Sy  Sem Semantic 
domain

Inactive
switchOn()

Producing

Error

Molding

Refill
Material

[operatingTemp > 150]

emergencyOff()

Statechart

[empty][!empty]

Rep.
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SysML Interpretation of Statecharts in Cyber-Physical Systems

• State of the automaton = 
equivalence class of states of the component

• Initial state = component states that occur at start

• Final state normally not applicable to physical systems

• Input = incoming discrete things and signals in a 
machine

• Output = modified things as well as computed answers

• Transition = operation of the CPS transforming the input 
to an adequate output using and adapting internal states

• Statecharts cover all domains. Even though in the 
following the examples usually belong only to one 
domain. Let’s keep this in mind!

ASCII
chars

Signals,
Things

interpretation of 
inputs I in the real world

M: Sy  Sem Semantic 
domain

Rep.
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Various Uses of Statecharts

Statecharts can be used for different viewpoints:

1. Representation of the life cycle of a component
2. Implementation description of a method / 

operation (in software only) 
3. Interface description of the allowed operation 

modi
4. Abstract description of requirements on the state 

space
5. Representation of allowed sequences of stimuli 

occurrences (input signals/arriving things)
6. Characterization of the possible or allowed 

behaviors of a component
7. Connection between state and behavior of a 

component

ASCII
chars

Signals
Things

interpretation of 
inputs I in the real world

M: Sy  Sem Semantic 
domain

Rep.
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Use of Statecharts for Code Generation 

• A Statechart can be used for code generation 

• This code can be:
 A) part of the software product
 B) part of a test driver
 C) part of a simulation

(especially, when modelling physical things)
• In a simulation, the 
 physical things are simulated through   messages (data), 
 physical states are simulated through   data states

• The principles of code generation are (almost) the 
same in both cases

• Further uses for Statecharts: 
 D) generator can derive test cases (along the paths) 
 E) run-time monitoring 
 F) visualization of executions

• These require other forms of code generators

ASCII
chars

Signals,
Things

M: Sy  Sem Semantic 
domain
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Semantics – Revisited

The semantics of a Statechart is defined in several levels:
1. Mealy Automaton (the core):
 the semantics of a Mealy automaton is a relation of input and output sequences
 interpretation: inputs are method calls, outputs are actions.

2. State invariants are added to refine the description.
 connection between diagram and object states, allowing to cope with infinite states.

3. Additional concepts, such as hierarchy, entry/exit actions etc.
 are transformed to a simpler sub-language of the Statechart language

simple 
Statecharts

semantics:
input/output-

relation

math-based
semantic mapping

concepts:
hierarchy
entry / exit
internal

transition
...

general Statecharts

concepts transformed: from complex 
to simpler language
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Transformations of Statecharts

• Transformations can map complex concepts to simple ones.
• Usage in
 semantic definition (as shown before) 
 code generation 
 optimization of Statecharts (state minimization, ...) 
 mapping of Statecharts to logic constraints

• Transformation to code generation is analogous to the semantic definition, however, executability of transitions 
is important now:

simple 
Statecharts

concepts:
hierarchy
entry / exit
internal

transition
...

general Statecharts

Java

OCL

code
generation

mapping to logic

concepts transformed: from complex 
to simpler language
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• Result of the transformation procedure: simplified 
Statechart without hierarchy (flat)

Simplification of Statecharts by Transformation

• Collection of transformations has been presented on 
the previous slides
 Applied in an intelligent order

• Most of the steps can be automated (i.e. by a tool)
 design decisions in some cases necessary or advisable 

for an optimized implementation
 decidability in logic constraints is not always given:
 check manually or use verification tool?

• Only few optimization steps are missing and thus 
shown below to complete the transformations 

simple 
Statecharts

concepts:
hierarchy
entry / exit
internal

transition
...

general Statecharts

concepts transformed: 
from complex to 
simpler language

MBSE
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Procedure to Simplify Statecharts: Steps 1-9: Remove Hierarchy

These steps are already known (and here is their application order):

1. Eliminate do-activities

2. Transform inner transitions to real transitions

3. Target states with substates: forward transitions to substates

4. Source state with substates: let transitions start from substates

5. Repeat 3.-4. at all levels of hierarchy until transitions have only atomic source and target states

6. Move exit-actions of the state to the action of each outgoing transition

7. Move entry-actions to the incoming transitions analogously

8. Include state invariants of superstates explicitly in substates

9. Remove hierarchic states (only keep the atomic ones)

simple 
Statecharts

concepts:
hierarchy
entry / exit
internal

transition
...

general Statecharts

concepts transformed: 
from complex to 
simpler language
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Procedure to Simplify Statecharts: Step 10: Refine State Invariants

10.Refine state invariants

• Starting point:   A  B  false
• Objective: obtain data states 

by transferring into disjoint state invariants

• Alternatives:
 conjugate invariants with other conditions, until disjoint

 introduce state attribute (“status”) and use it in invariant

 remove overlapping invariant part from a state

Z2 [B]Z1 [A]

Z2 [B && !C]Z1 [A && C] // C suitable

Z2 [B && status==2]Z1 [A && status==1]

Z2 [B]Z1 [A && !B]

Z2 [B && !A]Z1 [A]

or
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Example for Step 10:

• Can for example be used as implementation

StateA
[condA]

StateA
[condA && status == STATE_A]

StateB
[condB]

StateB
[condB && status == STATE_B]

Class

int status
final static int STATE_A = 1
final static int STATE_B = 2

…Class
…

introduction of a 
condition attribute

this arrow denotes the 
"generating" aspect of 
the transformation

CD CD

Statechart Statechart
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Procedure to simplify Statecharts: Steps 11-13: Remove State Invariants 

11. Integrate state invariants into the preconditions
 Objective: preconditions of transitions contain all information

12.Add state invariants to action conditions
 Objective: action conditions of transitions contain all information

13.Remove state invariants

equivalent
StatechartsSourceState

SourceState
[invariantS]

TargetState
[invariantT]

TargetState


[precondition]
stimulus()
[postcondition]

[precondition && invariantS]
stimulus()
[postcondition && invariantT]
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Procedure to simplify Statecharts: Step 14: Completion 

14.Completion of the Statechart
 depending on type: «error», «exception», «completion:ignore»
 («completion:chaos» needs another transformation)

• Objective: expand stereotypes in Statechart
• (This expansion is optimizable when used for code generation)
• Example:

«completion:ignore»
Statechart 

[!precon1 && ! precon2]
method() / (empty action)

transition loop with negated preconditions
for completion (only excerpt shown)

SourceStateA

StateBStateB

SourceStateA

StateBStateB

Statechart

[precon1]
method() /

action1

[precon2]
method() /

action2

[precon1]
method() /

action1

[precon2]
method() /

action2
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Procedure to simplify Statecharts: Step 15: Nondeterminism 

15.Reduce the nondeterminism in overlapping transitions
 introduction of a discriminator D

• Objective: deterministic Statechart
• There are more efficient code generation techniques: e.g., order of precondition checks
• Example:

Statechart

SourceState1

State3State2

SourceState1

State3State2

[A]
method() /

action1

[B]
method() /

action2

[A && (D || !B)]
method() / 

action1

[B && (!D || !A)]
method() / 

action2

nondeterminism reduced by adding a discriminator condition D 
in normal and negated form to a pair of overlapping conditions.
D is selectable, for example: (D == true) means left has priority

Statechart



26.12.2023

46

Software Engineering  |  RWTH Aachen271

Procedure to simplify Statecharts: Step 16-17: Readiness to Fire, Reachability

16.Eliminate transitions that are not ready to fire
 i.e. by precondition == false

• Objective: by the many transformations so far, many transitions have been duplicated and refined with 
additional conditions.
 This may include empty fire conditions: These transitions are removable
 ideal: test the firing conditions already during the transformation
 undecidability issues if first-order-logic constraints are involved

17.Eliminate unreachable states
 by building transitive closure over enabled transitions

• These steps 16, 17 are optimizations only.

• Final result: a substantially simplified flat form of Statecharts simple 
Statecharts

concepts:
hierarchy
entry / exit
internal

transition
...

general Statecharts

concepts transformed: 
from complex to 
simpler language
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Code Generation

• Starting point:
 simplified Statecharts:
 state invariants not yet expanded
 but states are flattened, etc.
 i.e. transformations 1-17 have been applied

• Possible variants for representation of states:

 explicit state attribute describes state
(e.g. using "int state")

 invariants of disjoint states as predicates, or

 state pattern: each state is associated with an own object
(this is a design pattern from Gamma et.al. 1994)

Statechart

Java

Representation for 
transformation rules: 

top = matching part from 
the model

bottom = resulting code

$elem describes a piece 
of the model to be 
matched (on top) and 
copied (to bottom)
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Ruled defined by An Example

$SourceStateA
[ $invariantA ]

[ $prec1 ]
$stimulus() /
$action1

Statechart 

$TargetState1 $TargetState2

[ $prec2 ]
$stimulus() /
$action2

$SourceStateB
[ $invariantB ]

[ $prec3 ]
$stimulus() /
$action3

$TargetState3

Java 

lets see … what happens with this example

Note:
• Many more stimuli are possible in the same states
• Many more states
• The above covers a situation with may be overlapping 

firing conditions 

transformation rule: 
from top to bottom
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Variant 1: Disjoint Invariants for States

Java 

Result: double nested 
if-then-else cascade

state invariant and
preconditions are used to
distinguish the transitions 

public ... $stimulus() {
if($invariantA) {
if($prec1) {

$action1;
} else if ($prec2) {

$action2;
} else {

// error handling
}

} else if($invariantB) { 
...

}}

disadvantage: code $invariantA
is repeated in the resulting code
(lots of code)

1
2
3
4
5
6
7
8
9
10
11
12

$SourceStateA
[ $invariantA ]

[ $prec1 ]
$stimulus() /
$action1

Statechart 

$TargetState1 $TargetState2

[ $prec2 ]
$stimulus() /
$action2

$SourceStateB
[ $invariantB ]

[ $prec3 ]
$stimulus() /
$action3

$TargetState3
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Variant 1 + Outsourcing State Invariants into own Predicates

Java 

each state is mapped to a 
predicate that evaluates the 
state invariant

public boolean inv$SourceStateA() {
return $invariantA;

}
public boolean inv$SourceStateB() {

return $invariantB;
}

public ... $stimulus() {
if(inv$SourceStateA()) {
...

}

advantage: $invariantA generated only 
once.

disadvantage: $invariantA can be 
complex and time-consuming when 
executed

better: simple states attribute 
“remembers”  current state

1
2
3
4
5
6
7
8
9

10
11

$SourceStateA
[ $invariantA ]

[ $prec1 ]
$stimulus() /
$action1

Statechart 

$TargetState1 $TargetState2

[ $prec2 ]
$stimulus() /
$action2

$SourceStateB
[ $invariantB ]

[ $prec3 ]
$stimulus() /
$action3

$TargetState3
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Introduction of a State Attribute

private int status;
final static int $SOURCE_STATE_A = 1;
final static int $SOURCE_STATE_B = 2;
final static int $TARGET_STATE_1 = 3; 
...

Advantage: efficient
Disadvantages: redundant storage +

consistency not assured, i.e. always must hold
(status==$SOURCE_STATE_A ) implies $invariantA

public ... $stimulus() {
switch($status) {

case $SOURCE_STATE_A :
if($prec1) {
$action1;
$status = $TARGET_STATE_1;

} else if ($prec2) {
$action2;
$status = $TARGET_STATE_2;

} ...
break;
case $SOURCE_STATE_B :
...

}}

Java 

Result uses 
switch statement

state diagram is 
stored as 
enumeration

1
2
3
4
5

6
7
8
9
10
11
12
13
14
15
16
17
18
19

$SourceStateA
[ $invariantA ]

[ $prec1 ]
$stimulus() /
$action1

Statechart 

$TargetState1 $TargetState2

[ $prec2 ]
$stimulus() /
$action2

$SourceStateB
[ $invariantB ]

[ $prec3 ]
$stimulus() /
$action3

$TargetState3
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Using Invariants for Tests

Java 

state invariants and some preconditions can be 
used as assertions for testing and simulation 
purposes and withed off in final code

public ... $stimulus() {
switch($status) {
case $SOURCE_STATE_A :

assert $invariantA; 
if($prec1) {
$action1;
$status = $TARGET_STATE_1;

} else {
assert $prec2;
$action2;
$status = $TARGET_STATE_2;

} ...
break; ...

}}

6
7
8
9
10
11
12
13
14
15
16
17
18
19

private int status;
final static int $SOURCE_STATE_A = 1;
final static int $SOURCE_STATE_B = 2;
final static int $TARGET_STATE_1 = 3; 
...

1
2
3
4
5

$SourceStateA
[ $invariantA ]

[ $prec1 ]
$stimulus() /
$action1

Statechart 

$TargetState1 $TargetState2

[ $prec2 ]
$stimulus() /
$action2

$SourceStateB
[ $invariantB ]

[ $prec3 ]
$stimulus() /
$action3

$TargetState3
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Design Patterns: State Pattern (Gamma et.al., 1994)

State pattern produces one individual subclass 
for each state.  complex structure,
but also: easier to adapt by handwritten code.

Core idea: instead of a switch, let the OO 
dynamic lookup do the selection of the code 
efficiently

…

state
$Class

$stimulus()
setState(StateClass k)

…
StatesOf$Class

handle$Stimulus($Class k)

…
CD

$SourceStateB

handle$Stimulus($Class k)

…
$SourceStateA

handle$Stimulus($Class k)

…

$SourceStateA
[ $invariantA ]

[ $prec1 ]
$stimulus() /
$action1

Statechart 

$TargetState1 $TargetState2

[ $prec2 ]
$stimulus() /
$action2

$SourceStateB
[ $invariantB ]

[ $prec3 ]
$stimulus() /
$action3

$TargetState3
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Design Patterns: State Pattern (Gamma et.al., 1994)

class $Class {

$SourceStateA $sourceStateA = ...
$TargetState1 $targetState1 = ...

State$Class state;

public ... $stimulus() 
{ state.handle$Stimulus(this); }
public setState(StatesOf$Class n) 
{ state=n; }

}

class $SourceStateA {

public ... 
handle$Stimulus($Class k) {
assert $invariantA‘;
if($prec1) {
$action1‘;
k.setState(k.$targetState1);

} else 
...

}}

Java Java 

Advantage: additional 
flexibility.
Disadvantage: overhead 
due to classes and objects: 
one for each state.

13
14
15
16
17
18
19
20
21
22
23

1
2
3
4
5
6
7
8
9

10
11
12

$SourceStateA
[ $invariantA ]

[ $prec1 ]
$stimulus() /
$action1

Statechart 

$TargetState1 $TargetState2

[ $prec2 ]
$stimulus() /
$action2

$SourceStateB
[ $invariantB ]

[ $prec3 ]
$stimulus() /
$action3

$TargetState3
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• Which requirements does a Statechart of the 
superclass impose for objects of the subclass?

 different views (Harel, UML, Rumpe, ...)

• Formally:

 subclass leads to behavior refinement

 therefore: subclass must refine the behavior specified by 
Statechart

 appropriate transformation rules ensuring this do exist

• Pragmatic view:

 behavior refinement by transformation rules rather rigid

 better: use of automata to test behavioral conformity

Inheritance of Statecharts

CDA

B

A Statechart

B Statechart

is there a 
relation?
e.g.
refinement?
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• Statecharts are an extension of the Mealy machines.

• Step 1: Transforming Statecharts to a simpler form

• Step 2: Mapping flat Statecharts to Code. e.g. using 
the state pattern

• Code from Statecharts is usable in various phases of 
software development: analysis, design, 
implementation for
 Test
 Product code
 Simulation

Summary Code Generation From Statecharts

AuctionReady
start()

AuctionOpen

AuctionFinished

Auction-
RegOpen

Auction-
Extended

finish()

startExtension()

Statechart
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• System Architecture is the overall, macroscopic system 
structure: collection of physical and/or computational 
components together with connectors that describe their 
interaction. 

• What is fundamental to understanding a system in its 
environment

• Things that people perceive as hard to change

• Architectural design decisions 
 not merely models or structures
 include the decisions that lead to these structures, 

and the rationale behind them

System Architecture
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Architectural Style

• In traditional building architecture: a specific method of 
construction, characterized by its notable features

• An architectural style defines: 
 a family of systems in terms of a pattern of structural organization
 a vocabulary of components and connectors, with constraints on 

how they can be combined [SG96]

• Architectural styles provide design decisions and constraints 
to induce desirable qualities

• Through architectural styles design decision are documented
upfront and pervasive through the system

• Facilitate reuse, understandability, interoperability
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Architectural Styles: Pipe-and-Filter

• Filters process input data and produce output data 

• Pipes connect filters 
 often linear, but branching is possible

• Focus on data processing 
 (as opposed to, e.g., layers)

• A filter has several (often only one) 
‘in’ streams and ‘out’ streams
 syntactic compatibility: 

filters can be connected if compatible

• Heavy use in shells of Unix systems, 
e.g., in the command chain:
 ls -l   |   grep "LOG"  |  sort -r

In
A B

Out1
C

CPF

D
Out2
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Component and Connector Pattern as a specific Architectural Style

• Component & Connector Architecture Description 
Languages (C&C ADLs):

• Component: black-box performing functions behind 
an explicit interface

 atomic components vs.

 composed components have topologies of 
subcomponents,

 component interface: set of (possibly directed) ports 

• Connectors: connect components via their ports

• More generic patterns can be found denoted in other 
architecture description languages (ADLs) 

A B

provided 
interface

required 
interface

A B

provided interface required interface

connector

port

port

connector

A-ITF B-ITF
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Other Architectural Styles

• Monolithic Architectures

• Layered Architectures

• Event-driven Architectures

• Publish-subscribe Architectures

• Client-Server Architectures

• Service-oriented Architectures

• Peer-to-Peer Architectures

• Microservice Architectures
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• Modeling cyber-physical systems needs to describe the structure 
of relevant things including
 components

• Functions of CPS use the data types for their channels & variables.

• A system is structurally decomposed in subsystems and 
components. 
 structural modelling is used throughout the complete development 

(design, validation & verification, deployment…)

Modeling Architectural Structure for CPS

 material
Cyber-

Physical 
System

Energy

Material

Data

 energy  data
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System Specification through Functions

• A system defines a cyber-physical function
 it encapsulates a physical and computational structure 
 performs data, energetic and physical transformations
 and is connected to its context through its interfaces.

• A system function is described through its
• input and output signature 

 types and forms of the 
- signals / data
- energy flow
- material flow 

• The functionality is mathematically 
described through the 
 relation between input and output

The concept of function is our first universal specification and construction principle

system boundary

flows: input

Cyber-
Physical 
System

Energy

Material

Data

flows: output

cyber-physical 
function

CPF

Repetition
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Models describing System Functions

• A system defines a function

• Aspects to be defined in abstract, purpose fitting 
models:

 Interface signature

 Internal structure (architecture)
 Logical structure
 Geometrical shape

 Behavior (over time)

 Interactions

 Assumptions about the context

Cyber-
Physical 
System

Energy

Material

Data

CPF

Abstraction with dedicated models to master complexity is the second universal principle.

Repetition
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The Underspecification Principle 

• Deterministic and fully specified relations are 
normally not achievable
 Delays happen
 Energy fluctuates
 Abstraction introduces lack of information

• Underspecification is the ability to describe the 
desired range of allowed behaviors 
(instead of a single, determined behavior)

• Advantages:
 Easier to specify
 Can be well combined with variant-building and 

methodical refinement

Controlled, explicit underspecification is the third universal specification principle

Cyber-
Physical 
System

Energy

Material

Data

Repetition
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• The Interface of a Cyber-Physical System is defined 
through its function signature

Signature of Input and Output of a Function

• The signature of a function describes the forms of 
interactions of a system component with its 
environment.

• Interactions are broken down to streams of elements, 
which describe the flow and can be of the kinds 
 data, 
 energy or 
 material

• Interactions are organized through input and output 
channels.

Cyber-
Physical 
System

Energy

Material

Data

The concept of stream is our fourth universal specification and construction principle

Repetition
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Composition

• Composition is an act or mechanism to combine
simple elements to build more complicated ones

• Examples: function composition (math), product 
composition (mechanics), software composition (CS), 
…

• System is composed of components.

• Component is atomic or hierarchically composed of 
simpler components.

• Sub-system ~ non-atomic component

Composition is the 5th universal construction principle.
It helps to manage complexity.
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Decomposition

• Decomposition is the act of deconstructing a 
specification into a structure of smaller sub-
specifications

• Software is decomposed according to logical
functions

• Physical systems are decomposed according to 
geometry

• Electronics is decomposed using electric devices and 
chips

• Decomposition and composition complement each 
other:
 Decomposition structures the problem
 Small sub-problems are solved into solution components
 Composition integrates the components into a system

From Autobild and SEBoK

Interaction between the components enforces to 
cope with interfaces and their structures, e.g., by 
explicitly defined architectures (software) or 
composition plans (physical).
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Decomposition in the Development Organization

• Decomposition is paramount to manage complexity

• Software and physical systems decomposition are 
relatively orthogonal and largely incompatible:
 Logical functions vs. physical geometry

• Interfaces easily become overly complex 

• Thus, decisions need to be made: 
Who is the complexity and innovation driver?

• Consequence: 
Development divisions are structured like their 
products are decomposed.

From Autobild and SEBoK

Function
(Component)
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Decomposition introduces a Tree of Components

• Decomposition can be organized in layers, but finally 
forms a tree.

• This pattern can be repeatedly applied:

 The level above (A0) describes the context of the system of 
interest

 The System of Interest (SoI) (A1) describes the system as 
 A1 Interface: a black box function designing the interface
 A1-Architecture: a decomposed structure consisting of 

component functions

 The component functions are then described and modeled 
one level below (A2) again 
(using interfaces and decomposition)

• The hierarchy of decomposition may be imbalanced: 
do not use (numbered) layers on a global scale

F43

F42

F41

F1

F3

F2

F0

F4

F0

Functions
of the upper 
system
(context)

Interface
specification
of the system

Architecture:
function 
decomposition

Function
decomposition
(refinement)
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Decomposition supports Reuse

• Functional decomposition leads to a hierarchy
 A tree of subcomponents, each described as function

• Reuse of identical subcomponents enforces to 
distinguish component definition and component use

• Libraries define components in an independent
reusable and adaptable form

• Reuse is black-box: no copy-pasting of models but 
referring to an existing artifact by name.

• Reuse is based on development for abstraction and 
encapsulation
 E.g., technology dependent / product specific signal 

names disallow reuse

… when done properly
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Four Dimensions in Development

• Degree of functional detail
 from abstract principle, through signal types to 

differentials

• Degree of formality
 from informal text, through models to logic formulae

• Decomposition hierarchy
 from system, through subsystem to atomic component 

• Degree of technology dependence
 from abstract principle, through principle algorithm to HW 

specific machine code

• Main problem of process definition:
Finding the optimal path from 0 to 100% result

Target: 100%: result

formality
decomposition

technology 
dependence

functional
details

starting 
point    0
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• V-Model suggests early decomposition in:
 Mechanics, software and hardware?

• Potential merits:
 Company structure according to domain
 SW-Developers are less dependent on mechanics
 own processes, own development culture, …

 SW-SW interfaces are bigger than SW/Mechanics interfaces
(shorter paths for discussion)

• Risks:
 Not easy to optimize software/mechanics co-design 
 SW/mechanics interface to be defined early

Decomposition in the V-Model

Decomposition structure should depend on innovation and complexity drivers

Bottom part of a Systems Engineering
V-Model version
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Examples: Composed Function Architectures

≥1

≥1

R

S Q
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Decomposition and Behavior Semantics Using Streams

• Function F specifying a CPS has behavior semantics 
based on streams of messages/material flowing over 
channels.

• Mathematically F is a set of mathematical functions:
 F    I1× I2 × … × In O1

× O2
× … × On



that obey timing restrictions

• Decomposition of CPF  into a CP Architecture is 
explained by mathematical function decomposition,

• Example:
 F =  G   H   J

• which is equivalent to explicit use of stream channels
 F(a,b) = c    where       

 k,r,s:  H(s)=(c,k)  s=G(a,r)  r=J(b,k)

• Math also explains hierarchical CPF decomposition. 
• Decomposition is compatible with underspecification

and its refinement.

F: CPS

G H

J

F
a

b

c

k

1

2

3

4

5

6

7

8

11

12

13

14

15

16

17

10

9

r

s
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Forms of Composition

• Components are connected using typed channels
 Component composition maps to 

mathematical function composition

• General composition F⊕G
 allows feedback loops between components, with a 

sound mathematical foundation
 is commutative and associative

• Thus composition ⊕ allows to compose arbitrary 
architectures of components  networks

• Special forms of composition can be derived
 Most common: parallel c., sequential c., feedback

F
i:M o:N

G

F

F⊕G

General composition F⊕G

parallel 
composition

sequential composition
feedback loop
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Systems Engineering: From Requirements through Functions to Components

CAD-ModelSystem function

Sub function

Sub function

Sub function

Sub function

Simulation

Control function

Sub function Sub function

Principle Solution

Software Specification

Dilatation
Qualitative 
Geometry

Material
Δl = l଴ ⋅ α ⋅ (T − T଴)

ΔT

l଴ Δl

Code

(Textual) Requirements Function-Oriented System Model Domain Models
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• 1:  The function concept is a universal specification and construction principle
  Functions are a well-known mathematical construct that allow us to model system functionality precisely
 Functions (and related math structures, such as continuous or discrete time, abstract data types) are the connection 

between systems thinking and mathematical foundations.

• 2: Abstraction with dedicated models to master complexity is the 2nd universal principle.

• 3:  Controlled, explicit underspecification is the 3rd universal specification principle
  Underspecification allows us to model absence of information or uncertainty in analysis, variability of the products, 

degrees of freedom when customizing a component and also behavioral nondeterminism that occurs during system 
operation.

• 4: The concept of stream is our 4th universal specification and construction principle
  Streams allow to describe the “flow” of elements (material, data, data) through input and output interfaces over time. 

Dense, even continuous, or discrete streams allow to model all forms of possible behavior of a function.

• 5: Composition is the 5th universal construction principle.
  Composition and decomposition are essential to manage complexity.

Summary: Completed Set of Universal Construction Principles 1-5:
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Summary as a Concept Model

Component

Architecture

• Decomposition is a main principle to master complexity.
• Streams / stream processing functions are the mathematical manifestation of CPF.

Concept
model

decomposed by
Elementary
Component

Composed
Component 1

consists of
*Function

System

realizes /
described by*
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Architecture Description Languages (ADLs)

An ADL is a modeling language designed to describe 
systems in their decomposed structure and behavior

• Often with graphical or textual syntax

• Use
 communicating architecture to all interested parties
 exploring alternatives
 support architecture creation, refinement, and validation
 blueprint for further implementation
 enable analysis and generation (mainly in software)

• Sometimes
 domain-specific syntax (e.g., automotive, avionics, …)
 formal foundations (i.e., well-defined semantics)
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The MontiArc C&C ADL

• MontiArc is an ADL 

 developed using MontiCore,

 based on the stream approach

 for modeling software and 
system architectures

 extensible with component 
behavior languages

• Most important MontiArc elements

 component: unit of computation 

 interface: has typed, directed ports

 hierarchy: topology of subcomponents

 connectors: realize communication paths
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MontiArc: Initial Example

• The component LightCtrl

 controls the interior light of a car

 receives the status from the light switch, 
the alarm system and the car’s doors

 emits a command to turn the interior light on or off

 the light is switched depending on the doors
 doors are opened: the light is turned on
 doors are closed: lights are turned off 

after a short delay

 if the alarm system is active, the interior lights blink

LightCtrl

OnOffCmd
cmd

AlarmStatus

SwitchStatus

DoorStatus

MA

provided interfacerequired interface
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MontiArc: Initial Example

LightCtrl

BlinkRequest

AlarmCheckAlarmStatus

Arbiter
SwitchStatus OnOffCmd

cmd

DoorStatus DoorEval

OnOffRequest

MA

this is a MontiArc
model (arc for 
“architecture”)

port

component definition

subcomponent 

connector

explicit port name

communication data type
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MontiArc: Components to Realize Functions

• The notion of component is central:
 explicit interface definition
 encapsulates its internals: can be used as black-box

• Two variants:

• Decomposed component definition
 hierarchically decomposed to an architecture of

sub-components
 describes their communication
 does not realize behavior itself, but usually has a black-

box specification of its behavior

• Atomic component definition
 usually not further decomposed
 behavior is specified / implemented directly

MA

LightCtrl

BlinkRequest

AlarmCheckAlarmStatus

Arbiter
SwitchStatus OnOffCmd

cmd

DoorEval

OnOffRequest

DoorStatus
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LightCtrl

BlinkRequest

AlarmCheck
ac

AlarmStatus

Arbiter
SwitchStatus OnOffCmd

cmd

DoorEval

OnOffRequest

DoorStatus

MontiArc: Ports and Connectors

• Port
 has a direction (unidirectional)
 incoming port: receives messages
 outgoing port: emits messages

 has a name and a type (of its messages)
 we may omit the name in the graphical 

representation if the port is uniquely identifiable 
by its type

• Connector
 defines a connection between ports
 connects one input with 

one or several output ports
 forwards messages

 can only connect ports of the compatible types

MA

implicit name

incoming outgoing

communication data type
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LightCtrl

BlinkRequest

AlarmCheck
ac

AlarmStatus

Arbiter
SwitchStatus OnOffCmd

cmd

DoorEval

OnOffRequest

DoorStatus

MontiArc: Data Types for Ports

• Communication data types
 define the structure of messages
 define the set of all possible messages

exchanged in a connection

 E.g., modeled in a class diagram
 classes are possible communication types
 attributes define their content
 class instances represent possible messages

MA

Off
Warning
Critical

«message»
«enum»

AlarmStatus

ℝ  value
Date when

«message»
Temperature

CD

communication data type
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MontiArc: Textual Syntax - Ports

• Each port consist of
 a direction (in/out)
 a type (defined somewhere else, e.g., in a class diagram)
 a name (must be unique in that component)

• Ports can be referenced via their name

MA
component LightCtrl {  

port in SwitchStatus sws,
in DoorStatus ds,
in AlarmStatus as,
out OnOffCmd cmd;

}

1
2
3
4
5
6
7
8
9

ports

direction type name

LightCtrl

OnOffCmd
cmd

as
AlarmStatus

SwitchStatus
sws

ds
DoorStatus
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MontiArc: Textual Syntax – Subcomponents and Connectors

LightCtrl

BlinkRequest

AlarmCheck
ac

res

asas
AlarmStatus

Arbitersws

br

cmdsws
OnOffCmd

cmd

req

ds

MA

component LightCtrl {  
port in SwitchStatus sws,

in DoorStatus ds,
in AlarmStatus as,
out OnOffCmd cmd;  

Arbiter arbiter;
AlarmCheck ac;

as.res -> arbiter.br;
as -> ac.as; 
arbiter.cmd -> cmd;

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

type

subcomponents

name

connectors

subcomponent port
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MontiArc: Component Instances

• A component instance belongs to a component type

• Distinguish between component types (definition) and 
component instance (usage) to foster reuse

• Libraries provide sets of reusable, black-box 
component types

• Component types can be instantiated multiple times 
in the same topology or across hierarchies

FullAdder

HalfAdder
h1

a

b

c

s
Or

a

b
o

HalfAdder
h2

a

b

c

s

a

b

cI

cO

s

MA

name of the
component instance

name of the 
component type

implicit instance name:
“or” is derived from the
component type “Or”

bool

bool

bool

bool

bool

bool

bool
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• Virtual “tick-messages” √ describe timing progress in specification and simulation
 each component emits a tick after consuming a tick
 synchronizes consumption on incoming ports

• Ticks are only for specifying time progress and 
are not real messages in a system’s implementation

Time in MontiArc

LightCtrl

AlarmStatus

DoorStatus

OnOffCmd

SwitchStatus

LightCtrl

AlarmStatus

DoorStatus

OnOffCmd

SwitchStatus

 CLOSED, √ , …        

                   √ , …        

                   √ , 𝑂𝑁, … 

1. consume a √ on each incoming port

t=1

t=2

2. time progress in the components time

 CLOSED, √ ,                 √   

                   √ ,                √   

                   √ , 𝑂𝑁,        √   

 OFF, √ , …                

at t=1

 OFF, √ , 𝑂𝑁,  √ , …   

3. emit ticks √ on all outgoing ports

at t=2

MA

at time
t=1:

at time
t=2:
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MontiArc: Example FullAdder

FullAdder

HalfAdder
h1

a

b

c

s
OR

a

b
o

HalfAdder
h2

a

b

c

s

A

B

CI

CO

S

MA

bool

bool

bool

bool

bool

bool

bool

a b c s

0 0 0 0

1 0 0 1

0 1 0 1

1 1 1 0

HalfAdder
a b o

0 0 0

1 0 1

0 1 1

1 1 1

OR

time

CI   1   1   0   1   1

S    0   1   1   1   1

CO   1   1   0   0   1

A    1   1   0   0   1

B    0   1   1   0   1

Functional definition of components 
is given by truth tables:

Derived FullAdder behavior over sequence of inputs:

adds two one-digit binary numbers

adds three one-digit binary numbers

S = sum
CO = carry over, out

CI = carry over, input
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• Simulation always has a purpose!
 Often, computer simulation experiments are used to 

analyze models (before systems are built). 

• A simulation often uses mock-up models for certain 
components

 Simulation is NOT the same as Visualization!

Definition: Simulation

A simulation is an approximate imitation of the 
operation of a process or system that represents its 
operation over time. 

• Simulation […] of technology for performance tuning 
or optimizing, safety engineering, testing, training, 
education, and video games. 

• Simulation is also used with scientific modelling of 
natural systems or human systems to gain insight into 
their functioning. 

• Simulation can be used to show the eventual real 
effects of alternative conditions and courses of action. 

• (all from Wikipedia)
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Simulation vs. System

• In software the difference between the system and 
the simulation of the system is complicated
 software may simulate itself.
 a mock may be the mocked component itself

• Simulation of physical components is replacing 
them by software
 co-simulation combines some mechanical parts with 

some software mockups

• In a simulation setting:
 identify the simulated elements and the 

mockups that drive a simulation
 (like with normal software testing)

 partial simulations
 environment vs. system 

LightCtrl

BlinkRequest

AlarmCheck
ac

AlarmStatus

Arbiter
SwitchStatus OnOffCmd

cmd

DoorStatus DoorEval

OnOffRequest

MA

components under 
simulation

mockup component
inside the simulation

context needs 
a mockup
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• These design decisions have consequences.

• In summary: 
 code, RTE and generators

for simulation vs. simulation differ in various ways.

Simulation Infrastructure For MontiArc

• In the following we exemplarily examine a possible 
simulator infrastructure for MontiArc

• MontiArc provides a simulation infrastructure with the 
following key characteristics:

• 1) Simulation of the distributed system within a 
single Java machine

• 2) Each component is realized as a Java object 

• 3) Time may optionally be used in the simulation

• 4) If so, time is simulated using Tick messages

• 5) Simulation consists of generated code and an 
runtime environment (RTE)

• 6) Efficiency is relevant
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• Flexibility by design: 
 Local behavior implementation for atomic components
 Local ports, local schedulers

• But also defaults:
 For the buffers, ports and the scheduling
 Only atomic behavior implementations need to be added 

MontiArc Mapped to Java Simulation

• MontiArc language constructs map to Java:

• Component  Object
• Port  Object

• Connection  Links (chain of links)

• Message  Object
• Tick  Special Object

• Buffer to store message queues 
 Queue, List

• Behavior  Method

• Scheduling  Management method in
scheduling object

ArbiterSwitchStatus OnOffCmd cmd

 OFF, √ , 𝑂𝑁,  √ , …   MA

object link

object
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• Remember: 
A system defines a cyber-physical function
 it encapsulates a physical and computational structure 
 performs data, energetic and physical transformations

• A system function is described through its
• input and output signature 

 signals / data, energy flow, and material flow

• All components, ports and channels are mapped, i.e.
 material transport is mapped to communication

MontiArc Mapped to Java Simulation

• MontiArc “typing” maps to Java typing:

• Component type  Class
• Port type  Class

• Connection  Association

• Message type  Class
• Tick  Singleton Class

• Buffer to store message queues 
 Queue, List class

• Scheduling  Management method in
scheduling class

Cyber-
Physical 
System

Energy

Material

Data

CPF
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Realization of Streams of Messages with Ticks: Handling Simulation Time

• A stream stores a buffer of messages

• The tick-message simulates time progress

• Message class subsumes various types of messages
+: allows a generic implementation of message buffer
-: enforces marshalling of all kinds of types (e.g. int, String)

• Stream (+ implementation): the buffer
 stores the buffered elements like a Queue
 variant: allows to retrieve history (e.g. for testing)

• Explicit encoding of the tick as object decouples 
“simulated time” from simulator execution time, which 
is also called “wall-clock time” or “elapsed real time”

RTE/CD

*

Message
Tick

Message
Ticked

Stream
«interface»

«abstract»

buffer for 
communication 
between sender 
and receiver

contains data messages:
subclassed for 
message types

Time progress
(not a real 
message, but also 
coded as object)

«singleton»

 OFF, √ , 𝑂𝑁,  √ , …   

Queue of message objects incl. tick

CD  shows 
classes of the 

Runtime-
Environment
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Realization of Ports

• Components consist of subcomponents and have in-
and out-ports

• Ports forward and store messages in a stream

• Receiver association: realizes the connection
 similar to a subscriber

• OutPort: accepts messages (via send-method) and 
sends it to the receiver 

• InPort: stores messages that can be retrieved fromm
the component (accept)

• ForwardPort acts a (efficient combination)
 looks like a normal incoming port from outside but 
 forwards received messages to the ports of 

subcomponents

RTE/CD

1..*receiver

*

subcomponents

incomingStream

«interface»
Component

Stream
«interface»

InPort
«interface»

OutPort
«interface»

*

*

1

send(…)

accept(…)

1common interface 
for components

• encapsulates incoming ports from contained sub-components
• looks like a normal incoming port from outside but 
• forwards received messages to the encapsulated ports

(simplified)
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• Time synchronization by scheduling the tick-
message:

• Tick’s are received individually in each port

• However, time is processed synchronous: 
The tick is given to the component exactly when:
 All incoming port received the tick 

(i.e. have completed their time slice)
 All messages prior to the tick are handled

• Consequence: component receives one tick all ports 
synchronously (= time progress)

Scheduling in Simulation

• Simulated systems usually acts in parallel, but 
simulation may be single threaded  efficient and 
controllable!
 But the execution of messages needs to be scheduled
 Scheduler decides on the order of execution

• Design:
 Each subsystem can have its own local scheduler

 Messages are stored in streams at InPorts
 InPort receives a message and notifies its scheduler 

 Scheduler 
 decides which messages are given to the components
 default: first in, first out
 but also handles time synchronization
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• Time is processed synchronous: 
The tick is given to the component exactly when:

 All incoming port received the tick 
(i.e. have completed their time slice)

 All messages prior to the tick are handled

• Consequence: component receives and emits only 
one tick synchronously (= time progress)

Simulating Time Progress

• Time synchronization by scheduling the tick-
message:

• Tick’s are received individually in each port 
(and “stored”) at first

LightCtrl

AlarmStatus

DoorStatus

OnOffCmd

SwitchStatus

 CLOSED, √ ,                 √   

                   √ ,                √   

                   √ , 𝑂𝑁,        √   

 OFF, √ , 𝑂𝑁,  √ , …   
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• What helps?

 Underspecification captures not fully known real behavior, 

 Know the applicability conditions of a model 
(e.g. Newton’s law does not hold in outer space)

 Add more real world phenomena to the models if needed 

Simulation vs. Real World

• The real world differs from simulations 

 Simulations execute models 
 models are abstractions
 rely on assumptions about the real world 

 The models abstract from details: 
they may be too abstract

 miss relevant phenomena of the real world?

 certain technical details may be relevant

 deficiencies of the real world may be relevant

Real
World

M: Sy  Sem Semantic 
domain

Simulation
objects

Model
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Time in Simulation vs. Real World

• The real world differs from simulations 

• Time in Simulation:
 The simulator can control the progress of time
 (if no real hardware is involved)

 Simulation can thus be much faster than the elapsed real 
time, e.g. in climate models that is very useful.

 Simulation can also be much slower, e.g. in particle 
physics or the human-brain

• Time in real world:
 Time cannot be influenced by the system
 “Ticks do not exist in the real world!”

Real
World

M: Sy  Sem Semantic 
domain

Simulation
objects

Model
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• Communication in real world:
 by sending messages through a network

• Network may have deficiencies, such as
 Varying latency; drop, repetition or altering of messages

• Explicit modelling the of the communication context
helps:

Communication in Simulation vs. Real World

• The real world differs from simulations 

• In a simulation, transfer of physical gadgets and 
energy is mapped to message communication

• Communication in a simulation:
 If the simulation is single threaded:

Components exchange data by copying values in RAM

 In HPC special operating system and middleware 
communication exists for transport, but this has different 
behavior than the targeted communication model

 In HW/SW-co-simulations the real communication system 
resp. the physical item transport may be used  
 Rest-bus-simulations mock parts of the real 

components

Real
World

M: Sy  Sem Semantic 
domain

Simulation
objects

Model
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• Failure models,
• Stochastic models, …
 allow to understand the existing context, 
 but also to define the systems operability context

Assumptions about the Real World in a Simulation

• A simulation is based on a model 
(= abstraction of the real world)

• then there are underlying assumptions 
(that can be violated?).

• Fail Safe
 Vibration, high/low temperature and other influences 

cause devices to fail
• Reliability
 Sensors may provide inaccurate or wrong values; 

Actuators may fail to execute their tasks
• Lack of Isolation
 External circumstances influence the system 

• These can be modelled explicitly, by refining the 
models
 Every form of (mis-)behavior can be modelled

Real
World

M: Sy  Sem Semantic 
domain

Simulation
objects

Model
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Components of a CPS

• A component is the realization of a cyber-physical 
function
 defines the explicit interface of the function
 provides the function via that interface

• Component decomposition is defined by functional 
decomposition
 each component is described by a function
 functions are composed like in math

• Ports define the interface of a function
 explicitly typed
 but energy, data, and materialized things don’t mix

«component»
Cyber-

Physical
System

CPF

«energy»

«fluid»

«signal»

«item»

«energy»

«fluid»

«signal»

«item»

«data» «data»
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• Switch car light on / off
 based on switch, door, and alarm status

• Input:
 Discrete data arrive at discrete times
 Continuous flow of energy

Example: Car Interior Light

CarInteriorLight

LightCtrl
Switch

Lamp

MA

OnOffCmd

AlarmStatus

SwitchStatus

DoorStatus

Voltage

Voltage Light

«energy»
Voltage

V value

«signal»
Light

cd intensity

CD4Phys

Off
Warning
Critical

«enum»
AlarmStatus

On
Off

«enum»
SwitchStatus
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Example: Storage of Screws

• Input:
 Screws arrive as discrete items
 Store releases arrived material based on identifier

• Internal state: 
 the received items are stored in dedicated racks, which is 

modeled by a 
 Map<Integer, Screw> s initialized with 
 The map looks like software data, but models a real 

storage with physical screws

• Output:
 And as specification the processing of screws given as 

SpesML spec for messages arriving at the two channels

Storage
id

i
o

«Item» Screw
«Item» Screw

«data» int

«Item» 
Map<Integer, Screw> s

MA

spec Storage
port in  Screw din;

int id;
port out Screw dout;

------------------------
Map<Integer, Screw> s = Map[];
------------------------
incoming screw:din
post: s.get(screw.id)==screw && 

dout=epsilon 
------------------------
incoming id
pre:  s.containsKey(id)
post: s==s@pre.remove(id) &&

dout==s@pre.get(id)

SpesML1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
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Modelling System and System Context

• MontiArc can be used to model the context of a 
system
 context is also modelled by a set of components
 but the intention is not to realize them, but to use them for 

specification, testing and simulation

• Example of context:
The internet (communication medium) in a protocol:
 goal:  transmit messages
 system to develop: Sender and Receiver
 context: Medium, is defined to explicitly specify 

assumptions about the medium

• In general: the smarter a system is, the more 
assumptions about its context need to be modelled.
 e.g. autonomous cars, connected airplanes, …

context

context
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• Signature of the ECS:
 btn1, btn2:  buttons to request the elevator for a  floor
 light1, light2: indicators where the elevator will go to
 at1, at2: signals that elevator has arrived
 open, close  actuators for the door

Humans as System Context 

• Example: Elevator System  (ECS)
 defined by
 Elevator (mainly the physical gadget)
 ElevatorControlSystem (the software part)
 HumanUser (part of the context)

 interfaces are defined by a MontiArc model

• Untrained HumanUser behaves arbitrarily 
 E.g. pushing buttons repeatedly, not entering elevator, ...

•  ECS must be robust against demonic context i.e. 
demonic human behavior 

• In an airplane, the pilot behavior can be constrained 
 a specification of pilot behavior finally is 
“implemented” via trainings, guidelines and 
handbooks. 

Elevator

btn2

btn1

light1

light2

close

open

at2

at1
Elevator
Control
System 
ECS

Human
User

MA
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Logical and Technical Architecture e.g. in the Internet of Things

Internet of Things describes the network of physical 
objects that are embedded with sensors, software, 
and other technologies for the purpose of connecting 
and exchanging data. 

• Logical architecture:

 components are logical computation units, 
independent of their later physical devices 
(threads / processes / processors / computers / clouds)

 connectors are independent of the actual communication 
form (network, encoding, security, …)

logical architecture

FireExtinguisher

Fire
Detector

MontiThings

Temperature
Sensor

Smoke
Detector Sprinkler

Sprinkler
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FireExtinguisher

Fire
Detector

MontiThings

Temperature
Sensor

Smoke
Detector Sprinkler

Sprinkler

Logical and Technical Architecture in the Internet of Things - 2

• Technical architecture
 components are physical devices, CPUs, …
 connectors are actual communication channels (Ethernet, 

Can-Bus, encoding, …)

• Mapping between logical and technical architecture
 various criteria …
 redundancy, robustness, load balance, security, …

• Virtualization leads to two (sequential) mappings

technical architecture
mapping

Sprinkler Sprinkler
Smoke

Detector

Fire
DetectorTemperature

Sensor
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Logical and Technical Architecture

• Logical architecture:
 components are logical computation units, 

independent of their later physical devices 
(threads / processes / processors / computers / clouds)

 connectors are independent of the actual communication 
form (network, encoding, …)

• Technical architecture
 components are physical devices, CPUs, …
 connectors are actual communication channels (Ethernet, 

Can-Bus, encoding, …)

• Mapping between logical and technical architecture
 various criteria …
 redundancy, robustness, load balance, security, …

• When virtualization is used: mappings 
 (a) from logic to virtual architecture plus mapping 
 (b) from virtual to physical architecture plus mapping

logical 
architecture

physical 
architecture

mapping
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The MontiArc language has two generators:
• MontiArc generates code to simulate distributed systems
• The MontiThings generator regards its components as software
 maps models to code for execution on distributed systems
 ports at system boundary act as connection to other systems, sensors, actuators

Mapping Architectures into the Real World: Language & OS Barriers

Smoke
Sensor

FireExtinguisher

Fire
Detector

MontiThings

Temp. 
(

∘
C)

C++

Temperature
Sensor

C

CO2 
(PPM)

Sprinkler C

Siren Java

external 
connector

MontiThings communicates 
via ports with external 
system components

External connectors 
may use different 
development 
approaches

Boolean
(On/Off)

Boolean
(On/Off)

System boundary

Software Engineering  |  RWTH Aachen346

Summary Architectural Modelling

• MontiArc is a good example for 
modelling distributed systems
 components as units of computation 
 interfaces of typed, directed ports
 hierarchical decomposition
 recursion loops 
 unidirectional connectors 
 explicit timing

• Underlying semantics: 
Focus: stream processing

• MontiArc also provides a simulation 
 flexible scheduling 
 extension with handwritten code
 explicit simulation of time

LightCtrl

AlarmStatus

DoorStatus

OnOffCmd

SwitchStatus

 CLOSED, √ ,                 √   

                   √ ,                √   

                   √ , 𝑂𝑁,        √   
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Physical Components as Class and as Function

• A component realizes a function.
 when modelling behavior, we attach functions to 

components 

• We can use CDs to model the possible structure of 
CPF  stereotype «component»
 A function decomposition must be compatible to a 

component decomposition to such a CD
 Function composition connects instances
 Functions include behavior (input and output), which is 

not defined in class diagrams

 Class diagrams allow to model 
 a) several possible structures (here e.g. 2..4 blades)
 b) possibly structural changes at runtime, 

(although functions have (mainly) a static structure)

 Component-CD is also called “Meta-CD” and e.g. used in 
development tools

Component-CD

«component»
Propeller

«component»
Axle

«component»
Blade

2..4

a:Axle b1:Blade

Propeller

b2:Blade

CPF

connectsTo

1
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Bill of Material: BOM in Production

• In manufacturing and production:
• A bill of material defines the product structure 
 a list of the raw materials,   sub-assemblies,   parts, 

and the quantities of each needed to manufacture an end product. 

• BOM is technically a subset of a class diagram
 attributes describing properties and quantities
 heavy use of composition 
 sometimes specialization (modelled by inheritance) 
 (but no associations)

• Variants of BOM (as defined by tools):
 for design : engineering BOM, 
 as ordered : sales BOM, 
 as built : manufacturing BOM, 
 for maintenance : service BOM.

• Varying in detail, and whether they describe product structure or 
the raw materials to be transformed into the product.

«material»
Steel

madeOf

Component-CD

«component»
Propeller

«component»
Axle

«component»
Blade

2..4

connectsTo

1
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CFP Architectures in Maintenance, Construction, etc.

• CPF Architecture 
 for design : engineering architecture, 
 as built : manufacturing architecture, 
 for maintenance : service architecture.

• … for a concrete product is more detailed and thus potentially 
better suited to reveal failures, optimizations and other relevant 
aspects.
 E.g. circuit diagrams for maintenance, 

exploded views,
plumbing in buildings,
etc.

• These are typically static diagrams of 
components and connections

a:Axle b1:Blade

Propeller

b2:Blade

CPF
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Function-based Universal Specification and Construction Principles

1. The function paradigm is the foundation
 Clear boundaries, clear input/ouput signatures

2. Controlled, explicit underspecification
 abstraction, variability, ability to describe the desired 

range of allowed behaviors

3. The concept of stream
 as mathematically precise, time dependent model of 

input/output behavior

4. Composition / decomposition into hierarchies of 
function nets

5. Static dimensioning of parameterized functions
 E.g. through simulations and optimization strategies

6. Adequate modelling techniques center around the 
function paradigm, e.g. SysML

«component»
Cyber-

Physical
System

CPF

«energy»

«fluid»

«signal»

«item»

«energy»

«fluid»

«signal»

«item»

«data» «data»
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OCLcontext Class inv:
invariant

context Method 
pre:  Precondition
post: Postcondition
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• Consider this class

• Now apply the following constraints:

 passengers are at least one year old

 passengers older than 90 will automatically receive 
support

OCL – Introductory Example

String name
int age
boolean needsAssistance

Passenger CD

OCL
context Passenger inv:
age >= 1

context Passenger inv:
age >= 90 implies needsAssistance == true



26.12.2023

60

Software Engineering  |  RWTH Aachen355

• Consider this class

• Now apply the following constraints:

 passengers are at least one year old

 passengers older than 90 will automatically receive 
support

OCL – Introductory Example

String name
int age
boolean needsAssistance

Passenger

OCL

CD

OCL
context Passenger inv:
age >= 1

context Passenger inv:
age >= 90 implies needsAssistance == true

context is 
the class

invariant for the 
attributes of the objects

operators from propositional logic 
allows to combine expressions
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OCL – Example 2 (#Landings)

dest arrivals

1

1*

…
Airport

String name

…
Flight

Time departure
Time arrival
Time duration

…
Airline

String name
String nation

origin departures

*1

*

• Less than 300 arrivals at any airport:

context Airport ap inv: 
ap.arrivals.size < 300 OCL

CD

navigation along an association:
returns set of objects (type: Set<Flight>)
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OCL – Example 2 (#Landings)

• Less than 300 arrivals at any airport:

context Airport ap inv: 
ap.arrivals.size < 300

dest arrivals

1

1*

…
Airport

String name

…
Flight

Time departure
Time arrival
Time duration

…
Airline

String name
String nation

origin departures

*1

*

multiplicity  0..299  was an easy 
alternative in this case

explicit definition of object ap as context:
invariant applies for all objects of type Airport:

navigation along an association:
returns set of objects (type: Set<Flight>)

CD

OCL
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OCL – Example 3 (Schiphol)

dest arrivals

1

1*

…
Airport

String name

…
Flight

Time departure
Time arrival
Time duration

…
Airline

String name
String nation

origin departures

*1

*

• All KLM flights start in Amsterdam (Schiphol):

context Airline al inv: 
al.name == "KLM"  implies

al.flight.origin.name == { "Schiphol" }
OCL

CD

navigation along sequence of associations:
returns set of names (type: Set<String>)
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OCL – Example 3 (Schiphol)

dest arrivals

1

1*

…
Airport

String name

…
Flight

Time departure
Time arrival
Time duration

…
Airline

String name
String nation

origin departures

*1

*

• All KLM flights start in Amsterdam (Schiphol):

context Airline al inv: 
al.name == "KLM"  implies

al.flight.origin.name == { "Schiphol" }

set with only a single itemnavigation along sequence of associations:
returns set of names (type: Set<String>)

CD

OCL
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OCL – Example 4 (Start + Landing)

OCL

dest arrivals

1

1*

…
Airport

String name

…
Flight

Time departure
Time arrival
Time duration

…
Airline

String name
String nation

origin departures

*1

*

• All KLM flights start or land in Amsterdam (airport is called "Schiphol"):

context Airline al inv: 
al.name == "KLM"  implies

forall fl in al.flight: 
fl.origin.name == "Schiphol" || 
fl.dest.name   == "Schiphol" 

CD
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OCL – Example 4 (Start + Landing)

dest arrivals

1

1*

…
Airport

String name

…
Flight

Time departure
Time arrival
Time duration

…
Airline

String name
String nation

origin departures

*1

*

CD

• All KLM flights start or land in Amsterdam (airport is called "Schiphol"):

context Airline al inv: 
al.name == "KLM"  implies

forall fl in al.flight: 
fl.origin.name == "Schiphol" || 
fl.dest.name   == "Schiphol" quantifier over a set of flights

OCL
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context Airport ap inv: 
ap.arrivals.size < 300

context Airline al inv: 
al.name == "KLM"  implies
al.flight.origin.name == { "Schiphol" }

context Airline al inv: 
al.name == "KLM"  implies

forall fl in al.flight: 
fl.origin.name == "Schiphol" || 
fl.dest.name   == "Schiphol" 

• OCL is a textual specification language
 for properties that UML-diagrams do not cover
 invariants, pre-/postconditions, guards, derived attributes

• OCL is similar to a First-Order Logic, but executable.
 Boolean operators, quantifiers

• Basic data types
 Boolean, Integer, Real, Char
 sets and lists

• OCL is used in the context of UML diagrams
 types and functions for OCL expressions are defined 

there

• In this lecture:
 special version of the OCL that is aligned with Java

Object Constraint Language (OCL)

OCL
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• Model-based specification, analysis & energy optimization

• Methodology: 
 model + rule-based specification of technical facilities
 automated data collection and -processing

• Example: 
• Checking adaptive heating circuits
• Automated check of consumption data
• Optimizing operations and correlation analysis

Modeling of Energy Efficient Buildings

State space X

State 
A

State 
B

State 
C

Sensor Type Comment Unit

OT double Outside  temp. °C

RT double Room  temp. °C

OT < 6 implies RT >13.0 and
OT > 22 implies RT = 0.8 * OT

Languages:  
Facility modeling based on hierarchical function nets,
OCL variant, Statecharts for condition monitoring
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• Task: “Model patterns of ‘interesting’ events”
 Safety Pattern Language, Airspace Configuration Language 
 Constraint language on flight conditions 

(flight plans, weather, pilot health, device conditions, …)
• DSLs based on OCL + pattern matching +

+ systematic injection of under-specification

Sesar – Air Traffic Management (EU)

with A. Horst
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• Multi-user web-application for data management

• Developed using MBSE and lots of code generation
 Generate full application stack

• Starting point:
 Class diagram modelling the application data

 (+ some GUI models)
 + Application functions

Example: MontiGem Code Generator using OCL

Frontend Backend Database Screenshot of MaCoCo (Management Cockpit for Controlling),
developed by AGe, PH, JM, LN, SVa, GV, and others

Rep.
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DSLs in MontiGem – MaCoCo

1 datatable "meinBenutzerInfoTabelle" {
2 columns < it {
3 row "Benutzername" , <username (editable)
4 row "TIM-Kennung" , <tim (editable)
5 row "E-Mail Adresse"      , <email
6 row "Kürzel"              , <initials
7 row "Registrierungsdatum" , date(<registrationDate) 
8 }
9 }

1 context User inv isPasswordValid:
2 password.length() >= 5;
3 shortError: "Min. 5 Zeichen";
4 error: "Das Passwort muss aus mindestens 5
5 Zeichen bestehen, hat aber nur " +   
6 passwort.length() + " Zeichen.";

GUI-DSL

OCL/P

D
ata stru

ctu
re

U
se

r in
terface

C
o

n
s

tra
in

ts

1 class User {
2 String username;
3 Optional<String> encodedPassword;
4 ZonedDateTime registrationDate;
5 Optional<String> initials;
6 String email;
7 boolean authenticated;
8 Optional<String> timID;
9 }

CD4A
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21
22
23
24
25
26
27
28
29

Generator – OCL

OCL
• logic constraints + also error messages

• Generation 
 A) for the GUI: Validator methods, used in forms to 

immediately check input & give feedback, in JavaScript

 B) for application server (backend): Validator methods, 
used to prevent erroneous inputs, in Java

public static isPasswordValid(password : string | null): void {
let constraintFailed = false;
if (!((!(password !== null) || password.length >= 5))) {

constraintFailed = true;
}
if (constraintFailed) {

throw new ValidationError("Min. 5 Zeichen");
}

}

user.validator.ts

public Result isPasswordValid(String password) {
if (!(password.length() >= 5)) {

return Result.error(
"Pwd zu kurz: " + password.length()

);
}

return Result.ok();
}

UserValidator.java

11
12
13
14
15
16
17
18
19

GUI frontend:Application server:

context User inv isPasswordValid:
password.length() >= 5;
shortError: "Min. 5 Zeichen";
error: "Pwd zu kurz: " + password.length();

Domain.ocl

1
2
3
4

Example model (shortened):

MBSE
8. Specifying Constraints and Invariants with the OCL
8.2. Overview

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen 

http://www.se-rwth.de/

Farbe!

OCLcontext Class inv:
invariant

context Method 
pre:  Precondition
post: Postcondition

Software Engineering  |  RWTH Aachen369

• Invariant:
 describes a property, that holds at each (observed) point 

of time.
 observation points of time can be restricted.
 temporary violations are permitted, e.g., while executing a 

method.
 Example: invariant  a==2*b is violated within method 

bodies like { a++; b=b+2 }

• Result:
 invariants apply especially when the objects are “idle” and 

no methods operate on the objects.

• Condition:
 a condition is a logic formula about a system.

It describes a property that a system or a result should 
have.

 its results in a Boolean value, i.e. true or false.

• Consequences for their use in code and simulations: 

 a condition evaluation does not crash
 Example:  1/0 == 7 has the Boolean value “false”. 

 a condition is side-effect free
 only result is the calculated value

 invariants are only partially computable (details later)

Concepts of OCL  - 1
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context Airport ap inv: 
ap.arrivals.size < 300

• Evaluation of a condition is always based on a 
concrete object structure. 
 Evaluator assigns values / objects to the variables that 

are introduced in the context.

• Context of a condition:
 a condition is embedded in a context, that it constrains

 context is defined by 
 one or several variable names and their 
 signatures, that can be used in the condition. 

 Context typically denotes 
 objects of given classes (like ap), which then allows 

access to their methods and attributes, or 

 methods of classes: 
describing the behavior of a method 

• Conditions are usually meant to constrain this 
“context”, i.e. the underlying data structures (classes) 
or method behaviors

Concepts of OCL  - 2

OCL
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• Context defines variables a,b:

• Name for a condition:

Context

...

Auction

+           auctionIdent
#String  auctionName
-Money bestBid
-int numberOfBids
-Time    startTime
-Time    closingTime
-Time    finishTime
-int activeParticipants

Person

+             personIdent
#String    name
-boolean isActive

participants

auctions bidder

* *

CD

context Auction a,b inv:
a.startTime < b.startTime implies
a.closingTime < b.closingTime

context Auction a inv Bidders1:
a.activeParticipants <= a.bidder.size

OCL

Software Engineering  |  RWTH Aachen372

• Context defines implicit new variable this:

• equivalent to:

• shortened form omitting “this” (like in Java):

Context without Explicit Names

context Auction inv: 
this.startTime.lessThan(this.closingTime)

context Auction a inv:
a.startTime.lessThan(a.closingTime)

context Auction inv:
startTime.lessThan(closingTime)

...

Auction

+           auctionIdent
#String  auctionName
-Money bestBid
-int numberOfBids
-Time    startTime
-Time    closingTime
-Time    finishTime
-int activeParticipants

Person

+             personIdent
#String    name
-boolean isActive

participants

auctions bidder

* *

CD

OCL
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Primitive Data Types and Collections

• As known from Java
 boolean, char, int, long, float, byte, 
short, double

 Corresponding operations are available (+,-, *..)
 forbidden are --, ++ etc. because of side effects

• String is not a primitive data type, but a normal 
class

• Collection structures for sets, lists,…
 Set<int>, List<String>, Optional<.>, ...
 With special syntax assistance

• Systems Engineering also uses 
 physical types, such as mol/m^2    and 
 physical expressions 3,3 km/h * 2,7 sek

context Auction a inv:
2 + 3,5 * a.numberOfBids > 1 – foo("text") 

...

Auction

+           auctionIdent
#String  auctionName
-Money bestBid
-int numberOfBids
-Time    startTime
-Time    closingTime
-Time    finishTime
-int activeParticipants

Person

+             personIdent
#String    name
-boolean isActive

participants

auctions bidder

* *

CD

OCL
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• Sets are similar to those in mathematics 
(like in Haskell)

• E.g.: the number of active participants is correct:

Set Comprehension

context Auction a inv:
a.activeParticipants == { p in a.bidder | p.isActive }.size 

...

Auction

+           auctionIdent
#String  auctionName
-Money bestBid
-int numberOfBids
-Time    startTime
-Time    closingTime
-Time    finishTime
-int activeParticipants

Person

+             personIdent
#String    name
-boolean isActive

participants

auctions bidder

* *

CD

p is in the set of bidders
p introduced with the scope 
of the sets comprehension

characteristic of p:
selects a subset

OCL
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• Local variables for convenience:

Local Variables in OCL: let-Construct

context Auction a inv:
let min = startTime.lessThan(closingTime) ? startTime : closingTime

in 
min == startTime

...

Auction

+           auctionIdent
#String  auctionName
-Money bestBid
-int numberOfBids
-Time    startTime
-Time    closingTime
-Time    finishTime
-int activeParticipants

Person

+             personIdent
#String    name
-boolean isActive

participants

auctions bidder

* *

CD

min is introduced 
as variable here

and can be used in the body

OCL

A ? B : C  = If A Then B Else C

Software Engineering  |  RWTH Aachen376

• Local operation:

Local Operations in OCL: let-Construct

context Auction a inv:
let min(Time x, Time y) = x.lessThan(y) ? x : y

in
min(a.startTime, min(a.closingTime,a.finishTime)) == a.startTime

...

Auction

+           auctionIdent
#String  auctionName
-Money bestBid
-int numberOfBids
-Time    startTime
-Time    closingTime
-Time    finishTime
-int activeParticipants

Person

+             personIdent
#String    name
-boolean isActive

participants

auctions bidder

* *

CD

min is defined as operation with arguments here

OCL
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• Case distinctions always evaluate to values 
(OCL has no statements)

• Variants:

 if condition then expression1 else expression2

 condition ? expression1 : expression2

 typeif variable instanceof type then expression1 else expression2

• typeif is a type-safe version of the typecast for variables

Case Distinctions

OCLcontext Supertype m inv:
typeif m instanceof Subtype then (m known here as Subtype)

else (m here as only Supertype)
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Priority Operator Associativity Operands, Semantics

14 .@pre left value of the expression in precondition

.** left transitive closure of an association

13 +.,  -., ~. right numbers

!. right Boolean: negation

(type). right type conversion (cast)

12 .*.,  ./., .%. left numbers

11 .+., .-. left numbers, string (+)

10 .<<., .>>., .>>>. left shifts

9 .<., .<=., .>., .>=. left comparisons

.instanceof. left type comparison

.in. left element of

Appendix: List of OCL-Operations, Part 1
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Priority Operator Associativity Operands, Semantics

8 .==., .!=. left comparisons

7 .&. left numbers, Boolean: strict and

6 .\. left numbers, Boolean: xor

5 .|. left numbers, Boolean: strict or

4 .&&. left Boolean logic: and

3 .||. left Boolean logic : or

2.7 .implies. left Boolean logic : implicit

2.3 .<=>. left Boolean logic : equivalent

2 . ? . : . right expression of choice (if-then-else)

Appendix: List of OCL-Operations, Part 2
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Farbe!

OCLcontext Class inv:
invariant

context Method 
pre:  Precondition
post: Postcondition
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• Boolean expressions about attributes and associations are combined with
 logical operators: and, or, equivalence, 

&&,  ||,  <=>,                 implies, not
 quantifiers: exists,  forall
 comparison: ==

• Boolean constraints are binary, either  true or false

• In an implementation undefined values can occur
 programs crash
 no termination, e.g., infinite loop 
 invalid value (reference does not exist, enumeration out-of-range)

• Introduction of a pseudo value “undef” that is used only to explain the semantics

Logic in OCL
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• Truth-table for a three-valued conjunction:

• undef is a mathematical “pseudo value”
 doesn’t exist in the OCL language itself
 Is used to describe semantics

• Q: Which laws can still hold?
 Goal: all of them!

Binary vs. Three-valued Logic: Example Conjunction

• Binary logic uses true and false only:
• E.g. the truth-table for the and-operator: 

• There are a number of laws

 associativity (a && b) && c  <=>  a && (b && c)

 commutativity a && b <=> b && a

 involution a && a <=> a

OCL

A && B true false

true true f

false f f

A && B true false undef

true true f ?

false f f ?

undef ? ? ?
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Variants of Three-valued Logic:

• (1) Strict Evaluation (Pascal, strict “&” in Java)
+ evaluation order doesn't matter because laws hold
- always both arguments to evaluate 
- inconvenient for a logic, because of three cases

• (2) Sequential Execution (“&&” in C, C++, Java, ...)
+ easy to implement
+ efficient: if left is false, right will not be evaluated
- not commutative (and thus not optimizable)

• (3) Kleene Logic (unusual in programming)
+ Boolean laws apply: associative, commutative, ...
- both arguments need to be evaluated in parallel

• (4) Lifting of Undef (verification tool Isabelle)
+ simple laws and proofs
+ easy to formulate properties
- not fully evaluatable

A && B true false undef

true true f undef

false f f
(1)      undef
(2),(3)  false

undef undef
(1),(2) undef
(3)       false

undef

A && B true false undef

true true f f

false f f f

undef f f f

Variant (4): undef and false in the lifted logic 
are treated as identical: so just binary logic!
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• Challenge: λ undef == false cannot be implemented

• Practice in Java shows “undef” mostly occurs by
1. abnormal error (exception)
2. infinite recursion 
3. infinite loops occurs rather rarely

• Case 1&2 result in exceptions (e.g., stack overflow). 
So lifting of an expression $x is partially 
implementable:

Binary Semantics and Lifting

• Distinction of terms with Boolean values with three 
results and logic expressions with two only values

• Developers write ordinary terms, like “b==1/0”

• Implicit lifting of the “undef” value to “false” by an 
operator λ with
 λ true == true
 λ false == false
 λ undef == false

• Logic expressions implicitly use the lifter λ:
 λ(a==5)  implies λ(isOpen())
 λ(b==1/0) 

• Lifter λ can be implicitly added in the OCL

Javaboolean res;
try {

res = $x;   // evaluate expression $x
} catch(Exception e){

res = false;
}

1
2
3
4
5
6
7
8
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Special Operator “defined”:

• In rare cases it is helpful to talk about the 
definedness of a value resp. an expression.

• Special operator
 defined( ... )

• allows to clarify the definedness of a value

• For example, it holds:
 inv:

!defined(1/0)

• Operator defined is not fully computable, but with 
tricks similar to the lifter λ it can be used e.g. in tests 
and simulations

inv:
let int a = 3,

int b = 0
in

defined(a/b) ? a/b : a+b

OCL1
2
3
4
5
6

context Auction a inv:

let Message mess = a.message[0]
in

defined(mess.foo()) implies ...

OCL1
2
3
4
5
6
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• Operators that may return defined values for undefined arguments can be called “non-strict”

• Boolean operators, case distinction, and the let-construct are not strict:
 if true then a else undef equiv.: a
 let a=1/0 in 3+7 equiv.: 3+7

• The comparative operator == (as well as != and equals()) are strict according to convention:
 (undef == undef) equiv.: undef

• Please note that 
 undef == undef equiv.: λ(undef == undef)         equiv.: false
 λ(undef) == λ(undef)     equiv.: true
 undef <=> undef equiv.: λ(undef) == λ(undef) equiv.: true

 i.e. <=> uses lifting inside arguments, while == uses lifting outside

Comparisons using ==

MBSE
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OCLcontext Class inv:
invariant

context Method 
pre:  Precondition
post: Postcondition
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• Example expressions 
 Set{}, Set{ 2,3,5 }, Set{ "text", "part" }
 {}, { 2,3,5 }, {2}, {{2}}
 [2,3,3],  List{2,3,3} 
 Person // in OCL a class name represents its extension; 

// i.e., the set of all currently existing objects

• All datatypes have operators, such as: add, first, last, 
… similar to the Set, List, Optional types from Java

• additional forms of expressions, such as
 Set comprehension  { … | … }
 Elvis operators for optionals . ? .
 Quantifiers forall, exists

Collections in OCL

• Particularly important for navigation along 
associations

• The OCL uses generic types, like Java

• Set<X> represents sets of type X
• List<X> represents lists:
 elements of index 0..(length-1) accessible
 multiple occurrences possible

• Collection<X> is super type of Set<X> and List<X>
 common interface of the two collections

• Optional<X> describes possible absence of an 
element

• Nesting is possible, e.g. Set<List<X>>
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• Collection types can be nested:

inv:
let Set<int>       si = { 1, 3, 5 };

Set<Set<int>>  ssi = { {}, {1}, {1, 2}, si };
List<Set<int>> lsi = List{ {1}, si, {}, si }

in ...

• Subtype hierarchy applies for collection and element types (as opposed to Java):

Collections: Nesting, Subtype Hierarchy

Guest

Person Collection<Person>

Collection<Guest>

Set<Person>

Set<Guest>

induces

OCL

CD

1
2
3
4
5
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• If X is a primitive data type or a collection, we have 
for Set<X>:

• For object type X it holds:

Comparison for Collections

• Comparison == for collections requires comparison of 
the elements:
 == is used for primitive data types (int, km/h, …)
 equals() for object types (Person, String, …)

• Collections themselves do not have an “object 
identity” in OCL 
 A==B compares contents of both collections elementwise

• Care: implementations sometimes redefine method 
equals()

• Comparison of lists is implemented analogously
OCL1

2
3
4
5

context Set<X> sa, Set<X> sb inv:
sa==sb <=> 
(forall a in sa: exists b in sb: a.equals(b)) 
&&
(forall b in sb: exists a in sa: a.equals(b))

OCL1
2
3
4
5

context Set<X> sa, Set<X> sb inv:
sa==sb <=> 
(forall a in sa: exists b in sb: a==b) 
&&
(forall b in sb: exists a in sa: a==b)
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• Examples for the Generator
 List{ x*x | x in List{1..6} } == 

List{1,4,9,16,25,36}
 List{ m.time.asMsec() | 

Message m in a.message }

• Filter:
 List{ x*x | x in List{1..8}, !even(x) } ==

List{1,9,25,49}

• Auxiliary result in y:
 List{ y | x in List{1..8},  

int y = x*x,  !even(y) } == 
List{1,9,25,49}

• Comprehension elements can rely on previously 
defined elements

Set and List Comprehension

• Abbreviation for collections of integers and characters
 Set{'a'..'c'}   == {'a', 'b', 'c'} 
 List{-1..1,3..7,14} == 

List{-1,0,1,  3,4,5,6,7,  14}

• General form of comprehensions with $expr and 
$description as placeholder for appropriate terms
 { $expr | $description }
 List{ $expr | $description }

• Comprehension forms $description 
 1: the Generator v in List/Set

new variable v, which iterates over the list
 2: the Filter: a Boolean condition

becomes powerful through combination with generator
 3: Auxiliary result introduces local variable: v = expr

OCL
OCL

OCL

OCL
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• Quite good expressiveness due to combination of the three forms
 unfortunately, the UML 2 standard does not offer these forms
 these have been borrowed from functional languages (Gofer, Haskell)

List{ z+"?" | x  in  List{"Spiel", "Feuer", "Flug"},
y  in  List{"zeug", "platz"},
String  z = x+y,
z  !=  "Feuerplatz"               }

== 

List{ "Spielzeug?",  "Spielplatz?",
"Feuerzeug?",
"Flugzeug?" ,  "Flugplatz?"   }

Comprehension: Excercise

OCL

write
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8. Specifying Constraints and Invariants with the OCL
8.5. Associations in the OCL

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen 

http://www.se-rwth.de/

Farbe!
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context Method 
pre:  Precondition
post: Postcondition
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Lets try:
• 1) Set of bidders of auction a:

a.bidder

• 2) Set of names of companies involved in a:
• a.bidder.company.name

• 3) Set of messages from auction a:
a.message.asSet // otherwise as List

• 4) Set of persons of a company c:
c.person // arrows don‘t count in OCL

• 5) Set of auctions in which the company c is involved:
c.person.auction // Flattening, see later!

Navigation along Collections and Associations in OCL

write

Message

#Time time

. . .
Company

#String name

. . .

Auction Person
auctions bidder

{ordered}
{ordered}**

*

1

**

CD

OCL
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• Set of auctions in which company c is involved:

 c.persons.auctions
 c has type Company
 c.person has type Set<Person>
 c.person.auctions

would now have type Set<Set<Auction>>
but is flattened and has Set<Auction>

• Automatic flattening removes a level of hierarchy:

 operator “flatten” is inserted implicitly by navigation, 
wherever a collection is available as output

Flattening Operator in Navigation

Message

#Time time

. . .
Company

#String name

. . .

Auction Person
auctions bidder

{ordered}
{ordered}**

*

1

**

CD

OCLc.person.auctions == 
{ p.auctions | p in c.person }.flatten 
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• Normal navigation:    ad.auction evaluates to Set<Auction>

• Qualified navigation: ad.auction[ident] evaluates to Auction

• Examples:

• {ordered}-associations have natural numbers from 0 as index.

Qualified Navigation

CD

OCL

Message

Auction

{ordered}

ident

AllData

*

1

context AllData ad, Auction a inv:
ad.auction[a.auctionIdent] == a &&
ad.auction[a.auctionIdent] in ad.auction;

a.message[1].content != a.message[0].content

OCL
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• Examples:

• Some properties:

Quantifiers

• forall and exists are the quantifiers known from 
mathematics

• Context definition behaves like a universal quantifier. 
Logically equivalent are:
 context $Class $var inv:    $P($var);

 inv: forall $var in $Class: $P($var);

• Computability: Quantifiers belong to first-order logic 
(FOL) and may have infinite "quantification space”

• But: object-valued quantifiers in OCL are interpreted 
on the sets of the currently-existing objects.
 these sets are finite: 

hence the OCL quantifiers are “computable”.

OCL1
2
3
4
5
6
7

forall a in Auction, m in a.message: 
a.startTime <= m.time;

exists a in p.auctions: a.category == "Clock"

inv:
exists int a, b, c, n: n>2 && a^n == b^n + c^n

OCL1
2
3
4

(forall x in Set{}: false) <=> true

(exists $var in $collExpr: $expr) <=>
!(forall $var in 4collExpr: !$expr)
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• Example:

Transitive Closure of Associations

• OCL is a subset of first-order logic and thus cannot 
describe induction of natural numbers or transitive 
closure of a recursive association.

• TClosureTry tries to describe the derived 
association that clique represents the transitive 
closure of friends, but fails  -- why?

friends

*

/clique
Person

0..2
CD

OCL1
2
3

context Person inv TClosureTry:
clique == 

friends.addAll(friends.clique)
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• Based on the OD in (X) at least three solutions occur:

 (a) the intended transitive closure 
 (b) another transitive solution
 (c) a ‘maximal’ solution 
 … and there are some more

Transitive Closure of Associations

• TClosureTry is a logic formula with several 
solutions: each solution contains the transitive 
closure, but possibly more: friends

*

/clique
Person

0..2
CD

OCL1
2
3

context Person inv TClosureTry:
clique == 

friends.addAll(friends.clique)

peter mary john

peter mary john

(X)

(a)

(b)

(c)

OD

peter mary john
friendsfriends

peter mary john
cliqueclique
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Transitive Closure of Associations  - 3

• Math has proven: FOL cannot specify transitive 
closure

• Solution: use a predefined explicit operator **, 
which builds the transitive closure of an association

 friends**

• The typing of the transitive closure is exactly like that 
of the underlying association (in all 4 cases). 

A Bassoc
assoc**

CD 

assoc

A

B
assoc**

CD 

assoc

A

B
assoc**

CD 

A

assoc**
assoc

CD 

OCL1
2

context Person inv TClosure:
clique == friends**

Software Engineering  |  RWTH Aachen401

context Airport ap inv: 
ap.arrivals.size < 300

context Airline al inv: 
al.name == "KLM"  mplies
al.flight.origin.name == { "Schiphol" }

context Airline al inv: 
al.name == "KLM"  implies

forall fl in al.flight: 
fl.origin.name == "Schiphol" || 
fl.dest.name   == "Schiphol" 

• OCL is a textual specification language
 for properties that UML-diagrams do not cover
 invariants, guards, derived attributes

• OCL is similar to a First-Order Logic, but executable.
 Boolean operators, quantifiers

• Basic data types
 Boolean, Integer, Real, Char
 sets and lists

• OCL is used in the context of UML diagrams
 types and functions for OCL expressions are defined 

there

• OCL provides good navigations along CD 
associations

Object Constraint Language (OCL)  Summary

OCL1
2

3
4
5

6
7
8
9

10
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pre:  Precondition
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Queries

• A query is a method of the underlying object model
• A query is free of side effects
 attributes may not be changed!

• In CDs: use stereotype «query»
• Java code: undecidable, what is a query, but common 

style to begin a query with get, is or has

• The stereotype «query» is a promise to the users and 
a commitment for the developer:
 queries may only call other queries

• Implementation in Java: 
a) pragmatic: “hoping” on absence of side effects
b) conservative: analyze the methods for query property
Also use the try-catch approach for lifting when using Java 
methods in the OCL constraints

Message

#Time scheduleTime ©

«query» +boolean isAuctionSpecific()
«query» +Auction   getAuction()

CD
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• A query may create new objects and manipulate them
 example: building a collection as the result of a query

• Old object structure has no knowledge of (links to) the new objects :

• Checking whether a method is a query requires a data flow analysis

Queries and Object Creation

snapshot with the original 
object structure 

query result:
temporary objects with links to 
the unmodified object structure 
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Library of «OCL» Methods

• The definition of reusable queries for OCL is often 
useful 
 queries are part of the underlying object model 
 OCL does not need the definition of methods

(except in let-constructs)

• Methods marked with the stereotype «OCL» are like 
queries, but only used for specification and 
simulation, not part of the product code
 they can only be used in OCL constraints

• Useful for a library of «OCL» methods 
 Like math functions, collection operations, etc.

«OCL»
OCL_Math_Lib

int sum( Collection<int> )
int max( Collection<int> )
int min( Collection<int> )
int average( Collection<int> )
List<int> sort( Collection<int> )
…
boolean even(int)
boolean odd(int)

...

these (static) methods: can be used in OCL when 
the library is imported. Example:

min(Auction.bidder.age) >= 18

CD

OCL

Person

«OCL» List<Message>
getMsgsOfAuction (Auction a)

receiveMessage(Message m)

. . .

MBSE
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OCLcontext Class inv:
invariant

context Method 
pre:  Precondition
post: Postcondition
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context boolean BidMessage.isAuctionSpecific()
pre:  true
post: result == true

• Context now is a method defined by method 
signature (incl. its class) 

• result is a special variable available in the 
postcondition, denoting the methods result

Method Specification

• OCL for the specification of the effect of a method:
 precondition describes what must be considered for the 

method to work correctly
 postcondition describes the effect of the method

• Meaning:
 “If the caller fulfills a condition, then the called method 

fulfills the postcondition”
 in short:  “Pre implies Post”

• Precondition is an obligation to the caller
• Postcondition is a implementation requirement

• See also Bertrand Meyer: Eiffel programming 
language
 contract (contract between caller and environment)

Means: no restrictions on the 
pre-state at the time of call

Means: result is simply always the value 
true in subclass Bidmessage

context OCL

1
2
3
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• Example:
The method Message.getAuction() returns the associated auction of a message: 

 context Auction Message.getAuction()

pre:  isAuctionSpecific()

post: this in result.message

Example: Method getAuction()

write

OCL

CD

Message

«query» +boolean   isAuctionSpecific()
«query» +Auction   getAuction()

Auction Person
auctions bidder

{ordered} *
*

**

*
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• Example:
The method Message.getAuction() returns the associated auction of a message: 

 context Auction Message.getAuction()

pre:  isAuctionSpecific()

post: this in result.message

Example: Method getAuction()

queries can also be used here

“this” refers to the object 
that belongs to the method

OCL

CD

Message

«query» +boolean   isAuctionSpecific()
«query» +Auction   getAuction()

Auction Person
auctions bidder

{ordered} *
*

**

*
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• addMessage adds a new message, the timestamp of which must be newer than the last one:

 context Person.addMessage(Message m)

pre: (msgList.isEmpty || m.time > msgList.last.time) 

&& !(m in msgList)

post: msgList == msgList@pre.add(m) 

 && msgCount - msgCount@pre == 1

@pre-Operator: Attribute Modifications 

Person

addMessage (Message m)

-List (Message) msgList
int msgCount

. . .

attribute@pre allows to access the 
state at method invocation time 

CD

OCL
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• (An invariant is interpreted based on one object structure (snapshot))
• A method specification uses two snapshots:
 start snapshot for the precondition and 
 end and start snapshots for the postcondition:

Semantics of a Method Specification

a “snapshot” describes an object structure 
at a certain moment of the runtime of the system

one object

timeline

start of the method call: 
this is the start snapshot

end snapshot for the method call:
here the postcondition applies
(in relation to the start snapshot)

method call

Software Engineering  |  RWTH Aachen412

• changeCompany() allows a person to change the company
 if necessary, a new company is created
 number of employees in the old and new companies will be changed

• This is a relatively complex situation, so we divide the specification into several cases
 1) new company already exists 
 2) new company does not yet exist

Example: Complex, Composed Specifications 

Person

changeCompany (String name)

. . .

* 1

Company

int employees
String name

. . . 
CD
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• Case 1: new company object already exists 
• Constraint: new company != old company

 context Person.changeCompany(String n)

pre CC1pre:   company.name != n && exists Company co: co.name == n

post CC1post: company.name == n &&

company.employees == company.employees@pre +1 &&

company@pre.employees == company@pre.employees@pre -1

Complex Specifications – Case 1

pre-/postcondition with names
old company, old nr. of employees

OCL

Person

changeCompany (String name)

. . .

* 1

Company

int employees
String name

. . . 
CD
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• Case 2: company object does not exist yet

 context Person.changeCompany(String n)

pre  CC2pre: !exists Company co: co.name == n

post CC2post: company.name == n && 

company.employees == 1 &&

company@pre.employees == company@pre.employees@pre -1 && 

isnew(company)

Complex Specifications – Case 2

write

OCL

Person

changeCompany (String name)

. . .

* 1

Company

int employees
String name

. . . 
CD
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• Case 2: company object does not exist yet

 context Person.changeCompany(String n)

pre  CC2pre: !exists Company co: co.name == n

post CC2post: company.name == n && 

company.employees == 1 &&

company@pre.employees == company@pre.employees@pre -1 && 

isnew(company)

Complex Specifications – Case 2

OCL

operator isnew(.) describes 
that an object was created

Person

changeCompany (String name)

. . .

* 1

Company

int employees
String name

. . . 
CD
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In Detail: @pre in Postconditions

• Example situation is illustrated by two object diagrams 
OD 1 and 2

• John moves from c1 to newly created c2. 
• We evaluate the following expressions in the 

postcondition:

john.company.employees == 1
 fully evaluated in the state after the method call

john@pre.company.employees == 1
 reference to the object john does not change: john==john@pre

john.company@pre.employees == 3
 company@pre is c1; c1.employees uses the current state of c1

john.company@pre.employees@pre == 4
 accesses original object c1 in the original condition

john.company.employees@pre == undefined

john:
Person

c1:Company

employees = 4

OD 2

OD 1

john:
Person

c2:Company

employees = 1

c1:Company

employees = 3

before method execution

after method execution

1

2

3

4

5

Software Engineering  |  RWTH Aachen417

In Detail: @pre in Postconditions

• Example situation is illustrated by two object diagrams 
OD 1 and 2

• John moves from c1 to newly created c2. 
• We evaluate the following expressions in the 

postcondition:

john.company.employees == 1
 fully evaluated in the state after the method call

john@pre.company.employees == 1
 reference to the object john does not change: john==john@pre

john.company@pre.employees == 3
 company@pre is c1; c1.employees uses the current state of c1

john.company@pre.employees@pre == 4
 accesses original object c1 in the original condition

john.company.employees@pre == undefined

john:
Person

c1:Company

employees = 4

OD 2

OD 1

john:
Person

c2:Company

employees = 1

c1:Company

employees = 3

before method execution

after method execution

1

2

3

4

5
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• Apre‘ is modified: Attributes, like var, become 
var@pre in the postcondition.

Composition of Methods Specifications

• If the precondition is false, there are multiple 
interpretations:
a) a program should detect errors and stop.
b) a program should notice errors in the log and continue 

as robust as possible.
c) the specification perspective: 

Nothing is stated. 
In particular, the postcondition need not be fullfilled.

• Case a) , b) can be used for defensive resp. robust 
programming

• Case c) is ideal for specifications: It allows 
composition of partial specifications
 if one of the two conditions is true, the corresponding 

postcondition must hold
 if both preconditions hold, also both postconditions.

OCL
context method()
pre:    Apre
post:   Apost

1
2
3

context method()
pre:    Bpre
post:   Bpost

1
2
3

context method()
pre: Apre || Bpre
post: (Apre‘ implies Apost)   &&

(Bpre‘ implies Bpost)

1
2
3
4

composition
( in case c) )

OCL
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The Underspecification Principle with OCL

• Underspecification is the ability to describe the 
desired range of allowed behaviors 
(instead of a single, determined behavior)

• Advantages:
 Easier to specify
 Can be well combined with variant-building and 

methodical refinement

• OCL postconditions are a perfect way to underspecify
 explicit choice of solutions
 range of possibilities
 e.g. because of (yet) unknown requirements

 approximated results

OCL assists controlled, explicit underspecification as specification principle

context int random(int x)
pre: x >= 1
post: 1 <= result && result <= x

1
2
3

OCL

context int choice(int x, int y)
pre: true
post: x == result || y == result

4
5
6

OCL

context float solver(Function f)
pre: exists x: f(x)==0
post: -0.0001 < f(result) < 0.0001

7
8
9

OCL
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The Underspecification Principle in OCL: Incomplete Characterization

• In general, a method specification can be incomplete

• It focuses on the essential functionality and leaves 
open further details to the programmers
 principle of angelic programmers/developer

• A demonic developer could obey the spec and still
 change silently other objects or attributes
 create/delete other objects

• For more precise restrictions, there are so-called 
“frame-rules”:
 only the explicitly mentioned attributes and objects may 

be modified 
 implicit assumption: all others remain unchanged and are 

only adjusted when explicit invariants enforce this

context Person.addMessage(Message m)
pre:  ( msgList.isEmpty || 

m.time > msgList.last.time) && 
!(m in msgList)

post: msgList == (msgList@pre).add(m) && 
msgCount == msgCount@pre +1

OCL1
2
3
4
5
6
7
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Code Generation from OCL

• Many constructs of the OCL are implementable
 use of the try-catch construct for errors
 collections can be mapped to Java 
 quantifiers can be implemented with (slow) iterators

• Invariants / pre- / postconditions can be evaluated 
and thus used in tests 
 explicitly specify, where to evaluate: like Java asserts.
 efficiency considerations: evaluate invariant on object 

changes only
 infrastructure needed to observe object changes

• From many/some postconditions constructive code 
can be generated: But, not always and not always 
unambiguous.

context Person.incAge()
pre:  true
post: age == age@pre +1 

1
2
3

OCL

class Person {
void incAge() {
assert true; // precondition
age = age+1; // postcondition

}}

1
2
3
4
5

Javaclass PersonSub extends Person {
void incAge() {
assert true; // precondition
agePre=age;  // store old values
super.incAge();  // call the real method           

// postcondition
assert age == agePre+1; 

}
}

1
2
3
4
5
6
7
8
9

Java

for testing 
manual 

implementation 
of incAge()

constructive 
solution (when found)
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Summary Method Specification 

• OCL does not have method definitions but uses the 
underlying object system.

• OCL uses contracts, i.e.
 preconditions and
 postconditions
to specify methods

• Methods belong to an underlying OO model
 e.g. in the product code
 in tests
 in simulations of physical objects

• OCL specifications can also be used for behavior 
specs of physical objects (or humans)
 Deficits: 
 no continuous behavior, but discrete
 Builds on method calls, and not on message passing

context Person.incAge()
pre:  true
post: age == age@pre +1 

1
2
3

OCL

timeline
method call

Snapshots:
precondition postcondition
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OCLcontext Class inv:
invariant

context Method 
pre:  Precondition
post: Postcondition
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Revisited Example: Simple Adder

• The Adder component has as signature:
 ℕ x   × ℕ y   → ℕ z

• actually over time it processes streams of inputs:
 stream<ℕ> x  × stream<ℕ> y  → stream<ℕ> z

• A choice could be to implement it via repeated call of 
method “doAdd” (written in OO style):
 int doAdd ( int x , int y )

• Spec omits:
 Timing details
 Absence of values (or waiting on values) on x or y inputs

• Care: “delivery” of incoming values to the appropriate 
method calls is often a schematic task based on 
explicit scheduling

ℕ x

ℕ y

ℕ z

z = x+y

CPF
Adder

context Adder.doAdd(int x, int y)
pre:  true
post: result = x + y

OCL

standard OCL: used a method concept

SpesML is a currently developed
function oriented specification language

1
2
3

spec Adder
port in int x, int y;
port out int z;

--------------------------------
pre:  true
post: z = x + y

SpesML4
5
6
7
8
9
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Revisited Example: SumUp (with State)

• Building sum of arriving numbers:
 We use an internal variable ℕ s 
 and as specification this invariant:   s‘ = x + s    y = s 

• A choice could be to implement it via method “doIt” 
with the same signature (written in OO style):
 ℕ  doAdd ( ℕ x ) resp.
 int doAdd  ( int x )

• State s is stored as attribute in the respective class 
“SumUp”

• Again: SpesML style is compact (no CD needed)
 and SpesML can also handle several output channels

ℕ x ℕ y

SumUp

init ℕ s = 0
spec: s‘ = x + s

y = s 

CPF

context SumUp.doIt(int x)
pre:  true
post: s = x+s@pre && result = s@pre

OCL

spec SumUp
port in int x;
port out int y;
state int s = 0;

--------------------------------
pre:  true
post: s = x+s@pre &&  y = s@pre

SpesML

CD

SumUp

int s = 0; 

1
2
3

11
12
13
14
15
16
17
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• The composition can be represented graphically, 

• but equivalently as textual (composition) formula:

Revisited Example: R-S-Flip-Flop

• R-S-Flip-Flop
 is composed of two NOR and a Delay 
 includes a feedback loop: 
 this allows to store a state (a bit)

≥1

≥1

R

S Q

logical NOR

delay CPF

spec Delay<T>
port in T x;
port out T z;
state T buffer;

------------------------
post: buffer = x  &&  z = buffer@pre

SpesML

spec NOR
port in boolean x, y;
port out boolean z;

------------------------
post: !x && !y  <=>  z 

SpesML

spec RSFlipFlop
port in boolean R, S;
port out boolean Q;

------------------------
!Q = Delay<boolean> (

NOR(S, NOR(R,Q)) )

SpesML21
22
23
24
25
26

11
12
13
14
15
16

1
2
3
4
5
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Revisited Example: Underspecified Communication Medium

• Medium describes an unreliable communication 
device:
 It may transport a signal (data) or may drop it
 This behavior is nondeterministic in nature.

 For simplicity: Medium does not replicate, alter or delay 
data, nor does it switch the order of data 

 Specification dout = din    dout = 

• Remarks: 
 The specification is based on a “current” snapshot 

behavior and cannot specify e.g. 99% success rate

Data din Data dout

Medium
CPF

spec Medium<Data>
port in Data din;
port out Data dout;

------------------------
dout = din  ||  dout = epsilon 

SpesML1
2
3
4
5
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Summary Function Specification with SpesML

• SpesML is a logic derived from OCL
 it specifies behavior of cyberphysical functions
 with discrete behavior 

(i.e. message passing over channels)

• SpesML builds on the OCL logic and its contracts, i.e.
 preconditions and
 postconditions
to constrain the inputs and relate them to outputs

• SpesML specifications are dedicated for behavior 
specs of software components, physical objects (or 
humans)
 Deficits: 
 no continuous behavior, but discrete

spec Medium<Data>
port in Data din;
port out Data dout;

------------------------
dout=din || dout=epsilon 

SpesML1
2
3
4
5

spec SumUp
port in int x;
port out int z;
state int s = 0;

--------------------------------
pre:  true
post: s = x + s@pre &&  y = s

SpesML11
12
13
14
15
16
17
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A Note On Recursive Definitions / Stateful Behavior

• Traditionally calculus is used to describe physical 
behavior (continuously)
 Derivations condense history into infinitely small time 

frames

• Digital theory uses discrete changes of states, 
events, signaling
 Transitions with instant changes based on state

• Recursion (i.e. a system continues its behavior based 
on its past) leads to significant differences in:
 the used forms of "solving"
 possible "executions"
 numerical or similar simulations

 Digital processes base on fixpoint theory 
 Continuous processes base on calculus

≥1

≥1

R

S Q

Factory ABC

M S

P

CPF

𝑎 =
ఋ ௩

ఋ ௧ 
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Objects in the Physical World (Systems Engineering)

• A system consists of a dynamically changing 
number of physical objects

• Objects represent entities of the domain and 
instances of exactly one class

• An object can be uniquely identified

• An object has a state as defined by its properties
 result of an operation depends on the current state

• An object has a behavior modelled by the 
functions of its class

class
LightBulb objects

Rep.

Kinds of objects:
• Muhammad Ali, Albert Einstein of class “Person”
• The car with plate “AC-P-23” of class “Car”
• The software object at address 0x… of software class  “Insurance”
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Object Diagrams

• An object is an instance of a class.

• Object diagram shows a concrete situation (snapshot) in 
a system run
 concrete, named objects
 specific attribute values
 link structure between objects

• Object diagram shows a single, possible situation
 vs. class diagram characterizes all possible situations

• It is possible that the situation shown in an object 
diagram occurs never, several times, or even 
simultaneously

• Application patterns
 Static structures without (much) dynamic changes
 initial situations for system startup
 undesirable situations, ...

OD
copper912:Auction

long    auctionIdent = 912
String  title = “420t copper”
/int      numberOfBids = 0

…

theo:Person

personIdent = 1783
name = “Theo Smith”
isActive = false

…

participants

p2:Person

personIdent = 20544
name = “Tony Brown”
isActive = true

…

participants

this is an 
object 
diagram
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Class Diagram of the Auction System (excerpt)

CD

AllData

auctionIdent String login
1 1

Auction

+long      auctionIdent
#String    title
-/Money  bestBid
?/int        numberOfBids
-Protocol log

…

Message
#Time time

StatusMessage
#Auction auction
#int newStatus

…BidMessage
#Person    bidder
#Auction auction
#Money     bidValue
#int graphSymbol

#Time        biddingTime

…
«interface»

BiddingPolicy
«interface»

TimingPolicy

1 1
… …

* *

* *

bidderauctions

/observers

participants

observedAuctions observers

Person

+              personIdent
#String     name
#String     login
-boolean   isActive

…

{ordered, addOnly}

{ordered, addOnly}

{frozen}{frozen}
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Example: Single Object

OD

Number of valid 
bids is to be 
calculated 
from Message List

electricPower:Auction

+long    auctionIdent = 783
#String  title = “Electricity, 7GW”
-/Money bestBid
?/int      numberOfBids = 112

-Protocol log

…
discuss
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Example: Single Object

visibility information 
and other tags 

can be specified

attribute list:
type, attribute name and value. 
Types and values can be omitted.

no method list 
is defined here!

comment

object name and type this is an object 
diagram(OD)

class attributes are 
underlined  (they are not 

often given, since they are 
the same in all objects of 

the  class )

derived attributes
marked with`/`

OD

Number of valid 
bids is to be 
calculated 
from Message List

electricPower:Auction

+long    auctionIdent = 783
#String  title = “Electricity, 7GW”
-/Money bestBid
?/int      numberOfBids = 112

-Protocol log

…
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Example: Link Structure

OD

discuss

«interface»
:BiddingPolicy

«interface»
:TimingPolicy

… …

/observers

copper912:Auction

long    auctionIdent = 912
String  title = “420t copper”
/int      numberOfBids = 0

… theo:Person

personIdent = 1783
name = “Theobald Schmidt”
isActive = false

…

participants

participants

participants

lisa:Person

personIdent = 45392
name = “Elisabeth Müller”
isActive = true

…

otto:Person

personIdent = 20544
name = “Ottokar Huber”
isActive = true

…
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Example: Link Structure

OD

«interface»
:BiddingPolicy

«interface»
:TimingPolicy

… …

/observers

copper912:Auction

long    auctionIdent = 912
String  title = “420t copper”
/int      numberOfBids = 0

… theo:Person

personIdent = 1783
name = “Theobald Schmidt”
isActive = false

…

participants

participants

participants

links of the “participants” 
association

link of a 
derived
association

bi-directional navigation
(but no multiplicities)

several objects 
of the same class

stereotype illustrates 
that this is an interface

link of the composite 
to its component

lisa:Person

personIdent = 45392
name = “Elisabeth Müller”
isActive = true

…

otto:Person

personIdent = 20544
name = “Ottokar Huber”
isActive = true

…
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Terminology

• Object
 object is instance of a class
 attributes have a value (but need not be shown)
 object diagram uses prototypical objects

• Object name for identification of the prototypical 
object

• Attribute describes state of an object
 always: attribute name
 optional: type, value, and visibility

• Abstract object diagrams use variables and 
expressions instead of concrete values

• Link is an instance of an association between objects
 optional: navigation direction, association and role names

OD
copper912:Auction

long    auctionIdent = 912
String  title = “420t copper”
/int      numberOfBids = 0

…

theo:Person

personIdent = 1783
name = “Theo Smith”
isActive = false

…

participants

p2:Person

personIdent = 20544
name = “Tony Brown”
isActive = true

…

participants
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Exercise

• Goal: Dealing with OD 
(not with perfect content, but syntactically correct):

• Design ODs that characterize the following situations 
(with the most interesting relationships between the 
involved elements):

 your family with their residences

 an aircraft and its technical equipment

 a (multi) flight connection for the guest “Wolfgang” on 
2.4.2024

home
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• ... is possible in many ways

• Representation indicators “...” and “©” indicate completeness of the attribute lists.

Representation of an Object

OD 

electricity:Auction

+long     auctionIdent =  783
#String   title = “E++, 7GW”
-/Money bestBid
?/int       numberOfBids = 112

-Protocol log

…

object name: type

OD 

:Auction

long   auctionIdent = 783
String title = “E++, 7GW”

…

anonymous object
marked with  :type

OD 

electricity

auctionIdent = 783
title = “E++, 7GW”
bestBid
numberOfBids

…

only the object name

attribute types 
are omitted
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Links in Qualified and Ordered Associations

• Qualified links usually contain the actual value 
 In the BMWFans example it may be a nick name 

 Special form: 
an attribute of the target object can be used as qualifier

• Links of an ordered association use integers as 
qualifiers
 In the example auction, the list of messages is shown

 the list shown does not need to be complete

OD

smithBMWFans:
SocialGroup

jack:
Person

richard:
Person

john:
Person

doe

doe2

b7:BidMessage
for an ordered 
association the
qualifier is a 
numerical index

start:StatusMessage

welcome:TextMessage

:Auction

0 1 14

qualifier

Software Engineering  |  RWTH Aachen443

• Class diagram (a) 
is of course ok

• Object diagram (b) is allowed
• (c) and (d) contain illegal composition structures, because one object belongs to several composites

Composition in the Object Diagram

Invalid structures due to 
the common partial object

(d)
:Car :Car

:SteeringWheel

(c)
:Car :Airplane

:SteeringWheel

OD OD

(b)
:Airplane

:SteeringWheel

:Car

:SteeringWheel

:Car

:SteeringWheel

OD(a)
Car Airplane

SteeringWheel

0..10..1

CD
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• ... by graphical containment
• Nesting is possible
• Both diagrams are equivalent (except for missing navigation information)

Alternative Representation of the Composition

timePol:TimingPolicy
…

copper912:Auction

long auctionIdent = 912
String  title = “420t copper”
/int numberOfBids = 0

…

bidPol:BiddingPolicy
…

ODcopper912:Auction

long auctionIdent = 912
String  title = “420t copper”
/int numberOfBids = 0

timePol:TimingPolicy
…

bidPol:BiddingPolicy
…

OD
Link of the composite 
to its component

Component is 
included graphically 
in the composite 
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Semantics of an Object Diagram?

• An object diagram is exemplary
 As opposed to a CD, which describes sets of possible 

object structures

• What is the meaning / semantics of such a diagram?

• For which purpose can object diagrams be used?

• Discuss:
 Incompleteness, exemplaric: how many “incarnations” in 

parallel?, even overlapping?
 Incomplete: other objects, missing attributes, 
 “prototypical character”

• Use:
 Static structure; start situation; unwanted situation,

• Semantics = set of all object structures that are 
incarnations of the OD

timePol:TimingPolicy
…

copper912:Auction

long    auctionIdent = 912
String  title =“420t copper”
/int      numberOfBids = 0

…

bidPol:BiddingPolicy
…

OD

discuss
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Semantics of an Object Diagram

• Exemplary means that
 there can be more than one incarnation of the diagram
 there need not be any incarnation
 the number can vary over both time and the various 

system runs

• Do not confuse prototypical objects (“rectangles”) in 
the diagram with objects of the system
 there is no 1:1 relationship

• Expressiveness of object diagrams is very limited, 
e.g., properties like these, cannot be expressed:

 “this OD is valid exactly once.”
 “this OD is valid at beginning”
 “this OD never occurs”
 “attribute x is within the range [-5,5]”

timePol:TimingPolicy
…

aTypical:Auction

String  title =“420t copper”
/int      numberOfBids = 62

…

bidPol:BiddingPolicy
…

OD
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• OD and CD are models, but there is a kind of “model-instance” relationship between both of them: we call this 
“model-incarnation”

• System objects “instantiate” prototypical objects in the OD and also classes of the CD: but these are three 
different forms of “instance”

Model Incarnation vs. Instance in the System

:Auction

long auctionIdent
String title=“Electricity counter”

… Auction …

Auction
Object

Auction
Object

Auction 
Object

Auction
Object

OD CD

+long auctionIdent
#String  title

a prototype 
object in the 
object diagram

a class in 
class diagram

“model incarnation”

“instance”

models

“prototype instance”

snapshot: the system at a specific moment
with an object structure in it

„real“ objects of the system
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Object Diagrams and Class Diagrams

• There are many relations between CD and OD
 classes must exist for objects
 attributes of the OD must be defined in the CD 
 and have the same type

 links must match the corresponding associations
 multiplicities are obeyed
 etc.

• These manifest in syntactic consistency conditions

• Representation Indicators “...” and “©” in both 
diagrams allow omission or indicate completeness

• Interesting questions
 Which syntax checks applied when during development?
 Can a CD be derived from exemplary OD's?
 Which object structures can be derived as test examples 

from a CD? ?
OD CD

OD

Vehicle Person
0..99 *

ownercar

owns

michael

CD

elon

peter

egon

ray

ecto1

kitt

car01

car02

car03

car56
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Interpretation of OD’s in the System

• Interpretation like with classes in a CD:
 the real objects (on the street)
 data objects

• Stereotypes apply:
 «material»… elements, compounds, alloys, …
 «system»… machinery, …
 «component»… machine elements, …
 «energy»…        types of energy
 «being»… humans, animals, …
 «data»… for object structures, 

and other forms of data
 no stereotype = no fixed interpretation

• More fine-grained stereotypes are possible, e.g:
 «signal» … data sent around
 «subsystem»
 «item»

M: Sy  Sem Semantic 
domain

«data» 
:Car

M: Sy  Sem Semantic 
domain

«system»
:Car‘

CD

“AC-E-33”,
blue BMW …
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Methodological Use of Object Diagrams

Various usage possibilities

• exemplaric situations for discussion with users
• architecture description of static parts 

(i.e. a situation that always applies)

• precondition for a method call
• postcondition for a method call

• undesirable situation

• initial situation for a test
• expected result of a test

• Desirable:
 1) Combining ODs with OCL to describe logical parts
 2) Systematic code derivation from an OD 

OD

b7:BidMessage

start:StatusMessage

welcome:TextMessage

:Auction

0 1 14

t1:Time

long time

…

biddingTime

Software Engineering  |  RWTH Aachen452

Prototypical Objects: OD as Matching Pattern

• An object diagrams can be understood as a pattern
 Prototypes in the OD are patterns that can match 

real objects
 Underspecification through incomplete descriptions of 

objects give freedom

• In addition OCL allows to restrict underspecification
further, example:

• Possible Uses:
 for testing and for programming  

 Model situations with ODs instead of handcrafted 
pattern algorithms to recognize certain good/bad 
situations

OD

a:Auction …

int status = TimingPolicy.READY_TO_GO
boolean isInExtension = false

timePol:ConstantTimingPolicy …

start:Time

long time

…

String title

finish:Time

long time

…

extensionTime = 180s  &&
start.time + 2h <= finish.time;

OCL1
2
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Prototypical Objects: OD as Matching Pattern

• An object diagrams can be understood as a pattern
 Prototypes in the OD are patterns that can match 

real objects

• Abstract values are modeled by terms with variables

• Example: messages are ordered in the list in order of 
their timing

• Use:
  Model parts of logic formulae with ODs instead of OCL 

to recognize certain properties and situations

OD
a:Auction

n k

:BidMessage

#Person  bidder

…

t2:Time

long time

…

biddingTime

:BidMessage

#Person  bidder

…

t1:Time

long time

…

biddingTime
context Auction a, 

int n, k, 
Time t1, Time t2  inv:

n<=k implies
t1.timeSec <= t2.timeSec

OCL1
2
3
4
5
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Prototypical Objects: OD as Instantiatable Template

• An object diagrams can be understood as a template
 Objects and their links in the OD are used to inatantiate

real objects accordingly 

• In addition OCL (or PL code) allows to combine ODs
 By using OD by their name (e.g. OD.Pers)

• Possible Uses:
 for testing and for programming  

  Model OD templates instead of handcrafted patterns 
algorithms to instantiate object structures

OD.Pers

context Auction test32 inv MyNewTest32:
forall int x in {1..100}: OD.Pers;

OCL1
2

test32:Auction

long    auctionIdent = 32
String  title = “TestAuction”

…

:Person

personIdent = 1000+x
login = “log” +x
name = “Tester” +x
isActive = (x%3 == 0)

…
participants

attributes are defined by embedded 
OCL expressions (with free variable x)
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Methodical Use of ODs with OCL

• Each OD can be understood as logical constraint
(with free variables and named accessible objects)

• OD describes an exemplaric situation
• Variables allow abstraction: “abstract values”

• OCL e.g. describes relationships among attributes
• OCL allows combination of object diagrams

 composition OD.A  &&  OD.B

 forbidden !OD.A

 alternatives OD.A  ||  OD.B

 multiple instances forall int x in {1..100}: OD.A

• Usage in
 method specifications (pre-and postconditions)
 description of the effect of constructors / modifiers

:Person

personIdent = 1000+x
login = “log” +x
name = “Tester” +x
isActive = (x%3 == 0)

…

OD
a:Auction

k

:BidMessage

#Person  bidder

…

t2:Time

long time

…

biddingTime
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• Many variants are possible, e.g. 
 Repair (i.e. objects exist and are partially adapted)
 Marking (i.e. objects in illegal state are marked)

• Necessary: appropriate constructors, access to 
attributes, “pattern matching” algorithms, …

Code Derivation from Object Diagrams

Code derivation / synthesis / generation from OD helps 

1) OD as initial structure  code instantiates objects 
and sets attributes, e.g. like in a sophisticated factory

2) OD as matching structure

int status = READY
isInExtension = false

…

copper912:Auction

long    auctionIdent = 912
String  title =“420t copper”
/int      numberOfBids = 0

…

bidPol:BiddingPolicy
…

OD

timePol:TimingPolicy

Auction copper912() { 
Auction a = new Auction(912);
a.setTitle = "420t copper";
TimingPolicy timePol = new TimingPolicy();
timePol.setStatus(READY);              // ...

}

Java1
2
3
4
5
6

boolean copper912Check(Auction a) { 
return a.auctionIdent == 912 &&
a.getTitle == "420t copper" &&
a.getTimePol.getStatus() == READY && ...;

}

Java1
2
3
4
5
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Summary Object Diagrams

• Object diagrams are exemplary
 Close relation to class diagrams
 Prototypical objects instantiate classes
 Links instantiate associations

• OD can be applied to describe:
 data in a system
 physical objects of the system: «component» 
 events in a system: «event»

• OD can be understood as logic formula
• OD can be used in programming and testing
 for discussion with users
 architecture description of static parts 
 precondition / postcondition for a method call
 initial situation / expected result of a test

int status = READY
isInExtension = false

…

copper912:Auction

long    auctionIdent = 912
String  title =“420t copper”
/int      numberOfBids = 0

…

bidPol:BiddingPolicy
…

OD

timePol:TimingPolicy

peter

egon

ray

ecto1
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• Structure: Specification of hierarchies, ports, 
interconnection, model organization

• Behavior: Specification of sequences of actions, life 
cycle of a block, message-based behavior

• Requirements: Specification of requirements and 
relationships among model elements

• Parametrics: Constraints, enables integration of 
engineering analysis and design models

Four Pillars of SysML

crtl : Controller left : Motor

validate login[ registered ]

[ !registered ]

«requirement»

Foo

Id = “R01“
Text = “Acceleration > 5 m/s²“

fuelflowRate : Real

fuelDemand : Real

flowRate > demand

flowRate

demand
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Examples of SysML Diagrams in Practice
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Examples of SysML Diagrams in Practice -2
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• A Practical Guide to SysML, by Sanford Friedenthal, Alan Moore, and Rick Steiner, 
published by Morgan Kaufmann Publishers, Copyright 2009 Elsevier Inc. 

• Lecture Introduction to Model Based Systems Engineering read by Joseph 
Wolfrom of the John Hopkins University. All rights reserved.

• Systems engineering is subject of ongoing research 

Notes
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Clarification: SysML vs. UML vs. Systems Engineering

• Model-Based Systems Engineering ≠ SysML
 May use SysML but not limited to it

• SysML is not a methodology or a tool
 SysML is a modeling language
 SysML is independent of methodologies and tools

• SysML is not intended to replace current modeling 
techniques of the other engineering disciplines 
(CAD, Simulink, …)
 SysML intends to connect to others to allow for model 

interoperation
 a “single-point-of-truth system model” might use SysML
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Relationship Between SysML and UML as Concept Model

• SysML reuses 7 of UML's 14 diagrams, and adds 2 
new diagrams 
 requirement and parametric diagram

• The most important two:
 Block Definition Diagram (BDD)
 Internal Block Diagram (IBD)

• which are similar to resp. 
derived from
 Class Diagrams
 Object Diagrams

SysML Diagram

Behaviour 
Diagrams

Structure 
Diagrams

Activity 
Diagram

Sequence 
Diagram

State 
Machine 
Diagram

Use 
Case 

Diagram

Block 
Definition 
Diagram

Internal 
Block 

Diagram

Package 
Diagram

Requirement 
Diagram

Parametric 
Diagram

Same as UML 2
Modified from UML 2
New diagram type

Concept
model
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Blocks in SysML

• A block is a modular unit in SysML that is used to 
define types of physical entities 
e.g.: system, system component, …

• The SysML block is based on the concept of UML 
class, but extended and interpreted in the physical 
world as
 software, hardware, data, processes, material, energy, 

personnel, facilities, requirements, …

• Blocks feature various optional compartments that 
enable to describe block characteristics, e.g.

 Blocks include Ports for physical flows

In contrast to a UML class
• Block is a stereotyped extension of a UML class
• SysML Blocks extend the syntax of UML classes by 

distinguishing among various kinds of properties
 parts
 values

• The semantic interpretation of blocks differs from software 
classes

«block» 
Vehicle

BDD

compartment
label

«block»
BrakeModulator

values

dutyCycle: Percentage

allocatedFrom

«activity» ModulateBrakingForce
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• Multiple compartments to describe blocks 
 properties (parts, references, values, ports) and 

operations (ca. CD)
 constraints (used similar to OCL)
 “allocations” from/to other model elements (i.e. where the 

information comes from)
 requirements the block adresses
 … and user defined compartments

Blocks as Basic Structural Elements

• Flow Specification Block: inputs and outputs are flows
 A flow property signifies a single flow element to or from a 

Block

• Interface Block: to support nested ports

• Constraint Block: integration of engineering analyses

• Domain Block: … a component, location, or person

• External Block: Represents an external actor

• System Block: for structure organization
• Subsystem Block: for structure organization
• System Context Block: system embedded in its 

context

«block» 
Vehicle

BDD

compartment
label

«block»
BrakeModulator

values

dutyCycle: Percentage

allocatedFrom

«activity» ModulateBrakingForce
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• Specifies inputs and outputs as a set of flow properties that list can be displayed in a flow properties 
compartment

• Flow specification is used to type Flow Ports, in order to specify items which can flow via the ports

• A Flow Port of type FuelFlow can (in this case) bidirectionally receive and emit Fuel

• May use both directions but does not need to

Flow Specification Block

«flowSpecification»

FuelFlow

flow properties
out fuelSupply : Fuel{readOnly}
in fuelReturn : Fuel{readOnly}
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• Special kind of block for typing proxy ports
 no behavior or internal parts

• Contains a set of flow properties that can be shown in the flow properties compartment

Interface Block

«interfaceBlock»

ICE

flow properties

out engineData : ICEData

in mixture : Real

in throttlePosition : Real
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• Provide mechanism for integrating engineering 
analysis with other SysML models, such as
 performance models
 reliability models

• Constraint blocks can be used to specify a network of 
constraints
 represent mathematical expressions that constrain the 

physical properties of a system
 not typed or checked…

Constraint Block

«constraint»

PositionEquation

constraints

{x(n+1) = x(n)+v*5280*3600*dt}

parameters
v : Vel
x : Dist

dt
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• External Block
 block that represents an actor
 facilitates a more detailed modeling of actors like ports or 

internal structures

• Domain Block
 represents an entity, a concept, a location, or a person

from the real-world domain
 part of the system knowledge

Domain Blocks and External Blocks

«domain»
AutomotiveDomain

parts
HSUV : HybridSUV

properties
: Driver
: Passenger

: Maintainer

«external»
Road

values
incline : Real

general superset of the other 
property types of a block
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• Subsystem Block
 typically a large, encapsulated block within a larger 

system
 any Block can be converted to a Subsystem if you decide 

that the appropriate Block is decomposed

• System Block
 artificial consisting of blocks that pursue a common goal 

which cannot be achieved by the system's individual 
elements

 can be software, hardware, a person, or an arbitrary unit

System Blocks and Subsystem Blocks

«system»
HybridSUV

parts
c : ChassisSubsystem = c
p : PowerSubsystem = p

b : BodySubsystem = b

«subsystem»
PowerSubsystem

parts
fuelSupply : Fuel
i1 : ElectricCurrent

references
fuelReturn : Fuel

values
fuelFlow : FuelFlow
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• Virtual container that includes the entire system and its actors

• Any Block can be converted to System Context if you decide that the appropriate Block is decomposed

System Context Block

«system context»
Car

constraints
fuelFlow : FuelFlow

parts
fuelSupply : Fuel
i1 : ElectricCurrent

i2 : ElectricCurrent
references

fuelReturn : Fuel
values

sn : ID
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• … represents structural elements called 
blocks, their composition and 
classification

• Describe relationships between blocks
 composite association
 generalization
 (no associations)

• Define structural features of blocks
 part properties
 value properties
 ports

• Define behavior of blocks
 operations resp. at least their signatures

Block Definition Diagram (BDD)

bdd Structure [Automobile Domain]

«block» 
Automobile

System

«block» 
Baggage

«block» 
Physical 

Environment

Driver

P
ose

S
p

eed

A
n

g
le

P
ose

«block» 
Vehicle

SysML
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• Composite associations depict 
parts that make up the whole

 black diamond (like in UML)
 role names can appear 

on the part end

• Semantics:
Composite is composed of parts
and parts don’t change over lifetime
 static structure

BDDs rely on Composite Association

bdd Structure [Automobile Domain]
«block»
Camera

«block»
Protective 
Housing

«block»
Mount Assembly

«block»
Electronic 
Assembly

Parts
: Image Processor
: MPEG Converter

«block»
Camera Module

Parts
: Camera Housing
: Imaging Assembly
: Optical Assembly

1

ma

«block»
Platform

«block»
Stepper Motor 

Module

«block»
Tilt Gimbal

«block»
Pan Gimbal

azimut  
motor

elevation  
motor

azimut  gimbalelevation  gimbal

SysML
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Value Properties

• Used to model quantifiable properties of the system 
component that is modelled (similar to attributes)

• Based on a value type, which describe the values for 
quantities

• Listed in compartments using the following syntax
 value_property_name: value_type_name

• Value properties
 can have default values
 can also define a probability distribution for their values

«block»
Optical Assembly

values
aperture : mm = 2.4

«normal» {mean = “7”, standardDeviation = “0.35”}                   
focal length : mm

default value

probability distribution

SysML
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Ports

• Describes a structural interaction point of a SysML
Block, which connects interacting parts of a block
 equals interfaces in component and connector 

architectures

• Flow port (ca. MontiArc ports)
 specifies what can flow in or out of a block
 flow ports have a certain direction, which is indicated by 

the arrow direction
 flow port type is defined by name:type
 written over the port symbol

• Standard port: specifies a set of required or provided 
operations 
 Observe: this is bidirectional: OO only has provided 

operations
 But otherwise operations are like method call signatures

«block»
WaterHeater

coldWater
: Double

hotWater
: Double

SysML

GUI

User
Login

route 
requests

login
requests

Route
Management

«block»
Camera

<> camera I/O : 
CameraInterface
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Operations

• Operations describe something that a block can do

• Operations can have parameters

• Operations are typically synchronous (requestor waits 
for response)

• Operations are listed in the operations compartment 
of a block:

 “operation name (parameter list): return type”

• Equivalent to methods of CDs because BDDs and 
CDs coincide

«block»
Monitoring Station

operations
CreateRoute() : Route
DeleteRoute(in r : uint32)
CameraTestComplete(in OK : Boolean)
VerifyLoginDetails() : bool

note that the signatures are
language independent

and don‘t need to look like Java

SysML
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• Usage
 Internal block diagram (IBD) defines the architecture of a 

block using other blocks
 It provides one concrete connection structure
 (similar to object diagram)

• Definition
 Block definition diagram (BDD) defines blocks (types)
 captures properties, etc.
 reused in multiple contexts and varying connections
 (similar to class diagram)

Block Usage  (vs. Definition)

ibd [Block] Anti-Lock Controller

d1 : Traction 
Detector

m1 : Brake 
Modulator

bdd [Package] Structure [ABS Structure Hierarchy]

«block»
Library::Electro-
nic Processor

«block»
Anti-Lock 
Controller

«block»
Library::Electro-
Hydraulic Valve

«block»
Traction Detector

«block»
Brake Modulator

d1 m1

enclosing block

activate  : 5vdc

connector

item flow

port part/role

SysML
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Syntactic Elements IBD

• Enclosing block
 indicates that this ibd diagram defines the internal 

communication structure of a block

• Part/Role
 define the role of the elements within the communication 

structure

• Port
 indicates the inputs and outputs of a part

• Connector
 connects two parts respectively their ports

• Item flow
 defines the items (signals, messages) that are exchanged

ibd [Block] Anti-Lock Controller

d1 : Traction 
Detector

m1 : Brake 
Modulator

enclosing block

activate  : 5vdc

connector

item flow

port part/role

SysML
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Context Block: A Vehicle System Context with External Interfaces

ibd Automobile Domain [Vehicle Context Diagram]

:Physical Environment

:Driver

:External Entity 
[0..*]

:Atmosphere :Road

driver sensor in

Sensor 
Input

:Vehicle

Air

air in
Accelerator 

Cmd

GearSelect

throttle in

gear in

Wheel 
Force

road if right 
rear

road if left 
rear

Wheel 
Force

road if-1 road if-2

foot if

hand if

SysML
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Modeling Standard Ports and their Connectors on an IBD

• Standard ports specify interactions as services
 required interface specifies requests for services (socket symbol)
 provided interface specifies provided services (ball symbol)

ibd [Block] Surveillance System [UI and Monitoring Station Connections]

user
login

User
Login

: UI
login services

test feeback

route requests

User
Login

login
requests

: Monitoring Station
login services

test feeback

route requests

Login
Support

Test
Tracking

Route
Management

Test
Tracking

Login
Support

Route
Management

Camera
Control

camera
requests

SysML
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Context Block Showing External Interfaces

ibd Mobility Domain [Ticket Vending Processor Context]

Ticket Reader: 
MagneticStripReader

:Entry 
Time/Date

Credit Card Reader: 
MagneticStripReader :Credit

Card Nbr

:Processor

:Entry 
Time/Date

:Credit
Card Nbr

Entry Time/Date

Credit Card Nbr

:Display Unit

:Printer

:Fee

Fee

:Fee

Fee

:Fee

SysML
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• Logical Architecture: 
 Functions and 
 Composition to an Architecture

• Product Architecture: 
 Decision on HW/SW-realization 
 Hardware components

• Next technical level would be:
 Explicit inclusion of communication 

components

Mapping in SysML: Mapping Logic to Product Architecture

«LogicBlock»
Sensing

«LogicBlock»
ABP Modul

«LogicBlock»
Motion Manager

«LogicBlock»
Acting

«Component»
ABP xCU

«Component»
Steering Unit

«Component»
Braking

System Unit

«Component»
Throttle

«Component»
Front Camera

«Component»
Front Ultrasonic

Sensors

«Component»
Infrared 
Sensors

«Component»
Powertrain 

CAN

«Component»
Steering CAN

ibd Product Architecture_Vehicle

ibd Logical Architecture_Vehicle

«allocate»«allocate»«allocate» «allocate»

«allocate»

«allocate»
«allocate»
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The MontiArc C&C ADL

• MontiArc is an ADL 

 developed using MontiCore,

 based on the stream approach

 for modeling software and 
system architectures

 extensible with component 
behavior languages

• Most important MontiArc elements

 component: unit of computation 

 interface: has typed, directed ports

 hierarchy: topology of subcomponents

 connectors: realize communication paths

Repetition
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Comparison MontiArc and SysML (with respects to blocks)

• Both languages have much in common

 MontiArc SysML

 component block
 port port
 channel flow
 composition composition

• Differences:

 SysML needs separate diagrams (BDD & IBD) for 
definition and use of blocks  MontiArc only one

 SysML includes behavior languages, MontiArc allows 
language composition to select your own languages
 E.g. MontiArcAutomaton, Embedded MontiArc,

MontiThings, MontiArc for KI

MA

SysML
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Summary

• SysML

 Most import diagrams: IBD & BDD

 Used for many purposes in Systems Engineering

 Concepts:
 block, 
 directed port, 
 connector, 
 composition

Model-Based Software Engineering
12. SysML v2 as Systems Modelling Language 
12.3 Behavior

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen 

http://www.se-rwth.de/
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Actions

• Used to model the steps of the activity

• Accept inputs and create outputs

• Can be hierarchically decomposed

• Again, actions are defined by an action definitions

• They are used in industry (e.g., BMW, Daimler, Siemens) to model activity-oriented concepts

«action def»
ProvidePower

parameters
in pwrCmd:PwrCmd
out torque:Torque [*]

parameters
in pwrCmd
out torque

«action»
providePower
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• A part can perform an action 

• Part decomposition can follow action decomposition

Parts Perform Actions

«part»
b:Vehicle

perform
providePower
provideBraking

«part»
e:Engine

perform
providePower.generateTorque

«action»
providePower

«action»
generateTorque

«action»
amplifyTorque

«action»
transferTorque
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• At the top are (optionally) the actors/parts
 actions of each actor are in a swimlane

Action Flow in a Nutshell

• Actions 
 action parameters: inputs and outputs
 special send and accept message actions

• Action flow
 successions: control flow
 inputs and/or outputs: object flow
 control nodes: control flow
 decision and merge
 fork and join

• Filled circle: initial node

• Bulls eye: final node
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Excursion: Petri Nets

• A mathematical modelling language of bipartite graphs

• To describe discrete event dynamic systems 
(e.g., in Business Process Modeling, Simulation, Data Analysis)

• A petri net PN is defined as PN = (N, M, W) with
 a net… N = (P,T,F) over 
 finite disjoint sets of places P and transitions T
 set of arcs F ⊆ (P × T) cup (P × T)
 a place multiset M : P → Z
 an arc multiset W : F → Z

place

transition

multiplicity

P1

P2

P3

markings

2

1

2

P1

P2

P3

2

1

2
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• Active node in activity diagrams are recognized via implicit tokens
 Semantics inherited from Petri-nets

• Firing a transition removes a token from the input nodes and adds a token to the output nodes
 Petri net transitions can fire if all input nodes contain a token

Petri Net Semantics of Activity Diagrams

P
et

ri
-n

et
A

D BuyBook

DeliverBook

SendInvoice

active node

t1 t2

t3

t4

t1 t2

t3

t4

BuyBook

DeliverBook

SendInvoice

active nodes

token

enabled

enabled
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• Used to show sequences of actions

• Control relates to  a control token
 Actions cannot start until it receiving a control token on all input control flows 
 Upon completion, actions place control tokens on all outgoing control flows

• Can be depicted by a dashed arrow, to distinguish it from object flows

• Can be used with:
 Forks and join nodes (parallel execution of control)
 Decision and merge nodes (selective execution of control)

• Object flows only communicate data

Control Flows vs. Object Flows 

MyAct
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• Pins match 
Parameters in number 
and type

• Rake symbol denotes 
details are depicted 
on another diagram

Decomposing an Activity Diagram with Call Behavior Actions

act Operate Camera

current image
{stream}

: Collect Images
image {stream} : Capture Video : Generate Video 

Outputs

«optional»
video out

«optional»
MPEG output

{stream}

«optional»
MPEG output

{stream}

«optional»
composite out

{stream}
«optional»

composite output
{stream}

act Generate Video Outputs [Routing Flows]

input signal:Video
{stream}

a1:Produce Test Signal

a2:Process Frame

processed
frames

a3:Encode MPEG

a4:Convert to Composite

video in

video in

MPEG output:MPEG4
{stream}

composite out:Composite
{stream}

MPEG out

composite
out

captured image
{stream}

invoke/call another
diagram

object flow
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Most Important Types of Nodes

Initial Node Final Node

Fork Node Join Node 

Decision Node Merge Node

[ok]

[!ok]

Software Engineering  |  RWTH Aachen500

• Fork nodes have one input flow, multiple output flows

 Output flows are independent and concurrent

• Join node have multiple input flows, one output flow

 Output occurs, only when all input flows are arrived at the node (default)

• Join specifications may override default join behavior of join nodes

Fork and Join Nodes

f1
f2
f3

{joinspec=(f1 && f2) || (f1 && f3)}
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Decision and Merge Nodes

• Decision nodes have one input flow, multiple output paths

 Guards must be mutually exclusive (non-overlapping)

 Only one output path can be used, based on guard conditions

• Merge nodes have multiple input flows, one output flow

 Output flow is triggered upon arrival of a token on any of the input flows

[ok]

[!ok]
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• Allocates actions to an entity responsible for 
performing the action

• Can be used to specify functional requirements of an 
actor, component, or part

• Can be depicted horizontally or vertically

Partitions (aka Swimlanes)

Select Camera

A
dv

a
nc

e
d

O
pe

ra
to

r
S

ur
ve

ill
a

nc
e

S
ys

te
m

Intruder Intel

Move Joystick

«datastore»
current camera

Issue Camera Commands
Tilt Camera

Pan Camera

[else] [else]
[Intruder off camera] [Intruder has moved]

Intruder Intel Intruder Intel

new camera joystick command

current
camera
{stream}

joystick vector
{stream}

tilt commands
{stream}

pan commands
{stream}

send signal
action

event
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Activity Model (with Branching Object Flows)

act Pay Parking Bill (Control Flow)

Approach 
Gate

Prompt Driver to Insert 
Parking Ticket

Insert Ticket

Calculate 
Fee

Insert Credit
Card

Verify Credit

Open Gate Depart Gate Close Gate

:Entry DateTime

:Entry DateTime
:Fee

:CreditCard
Nbr

:CreditCard
Number

object flow

:Fee

:Fee

multiple object 
flows might 
introduce 
ambiguity

:Feethis control 
flow preserves 

unambiguity

control flow
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Decomposition of Calculate Fee

• Example below shows use of Input and Output Parameters for the Calculate Fee Activity

• Hierarchical relationship of activities and actions

:Entry 
Time/Date

Calculate Time Parked Calculate Fee Amount

:TimeParked

:TimeParked

:Fee

act Calculate Fee
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Summary

• Activity diagrams model behavior that specifies the transformation of inputs to outputs through a controlled 
sequence of actions

 inputs/outputs can either be streaming or non-streaming

• Parameters: Multiple inputs or outputs of activities and contain multiple actions

 Actions consume input tokens and produce output tokens via pins

• Object Flows are used to depict the flow of object tokens from one action to other actions

• Control Flows are used to depict the transfer of control from one action to other actions using control tokens

• Partitions are used to assign responsibility for actions to blocks or parts that the partition represent

Model-Based Software Engineering
12. SysML v2 as Systems Modelling Language 
12.4 Constraints and Requirements

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen 

http://www.se-rwth.de/
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Constraints

• Constraints are reusable, parametrized Boolean expressions

• Used to express specifications (equations)

 Reference their inputs

 They can model abstract (not computable) analytical constraints, 
value derivations, boundaries, etc.

• Constraints can be used in a context, typically a part

 Their inputs can be bound

 They can be asserted 

• Asserted constraints cannot be violated

 Otherwise the model is inconsistent

constraint def MassConstraint {
in partMasses : MassValue[0..*];
in massLimit : MassValue;

sum(partMasses) <= massLimit
}

part def Vehicle {
assert constraint m : MassConstraint {

in partMasses = (
chassisMass, engine.mass,
transmission.mass

);
in massLimit = 2500[kg];

}

attribute chassisMass : MassValue;
part engine : Engine {

...

}  

asserted
constraint

usage binding of
values
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Examples from Industry

sensed: Temperature

target: Temperature o: Temperature

cooling: ActuatorSignal

heating: ActuatorSignal

enclosing 
part def

<<part def>>
AllOrNothingRegulator

<<part>>
c:ControlPanel

<<part>>
s:Subtractor

assert constraints
{o == target–sensed}

<<part>>
e:Evaluator

assert constraints
{ if i<0  then heating==0 && cooling==1 else

if i>0  then heating==1 && cooling==0 else 
if i==0 then heating==0 && cooling==0  }

i: Temperature

binding connector: 
properties at both ends 
have the same values
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Examples from Industry

pedal: Force f: Force

x: Distance

<<part>>
Straight-Line Vehicle Dynamics

<<part>>
f:BrakingForce

assert constraints
{f == duty*pedal*(1-friciton)}

friction: Coefficient

duty: Percentage

<<attribute>>
m:Mass

reference to 
an attribute

<<part>>
a:Acceleration

assert constraints
{f == m*a}

<<part>>
v:Velocity

assert constraints
{a = dv/dt}

a: Acceleration

v: Velocity

<<attribute>>
t:Time

<<part>>
d:Distance

assert constraints
{v = dx/dt}
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Requirements

• Constraint Definitions
 define equations that can be re-used and inter-connected
 define a set of parameters
 define an expression that constrains the parameters

• Requirements are special Constraints
 They group multiple constraints (or requirements, i.e., allow nesting)
 They can have assumptions in the form of constraints
 They have a subject and can reference its attributes
 They can be satisfied by providing an actual subject

(similar to constraints being asserted)

• non-satisfaction renders model inconsistent

requirement def VehicleMassLimit {
subject vehicle: Vehicle;
assume constraint {

doc /* Fuel tank is full. */
vehicle.fuelMass == vehicle.maxFuelMass

}
require massConstraint;

}

part commuter: Vehicle {
attribute :>> chassisMass = 1500[kg];

}

satisfy r1: VehicleMassLimit by commuter;

reference to 
constraint
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13. Summary

• Parametric diagrams

 capture the analysis as a network of equations

 help ensure consistency between the system design model and multiple engineering analysis models

 help to manage technical performance measures

• Constraint Blocks

 define parameters and constraint expressions

 represented on a Block Definition Diagram

• Constraint Property

 usage of constraint blocks

 represented on a Parametric Diagram

MBSE
13. Interactions with Sequence Diagrams 
13.1. Concepts, Syntax

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen 

http://www.se-rwth.de/

Farbe!

Software Engineering  |  RWTH Aachen513

• Comparison of SD and statechart: 
both are behavioral descriptions

• Uses of SDs
 modeling of exemplary observations
 representation of interaction patterns of objects
 chronological order of calls
 trigger for tests

• Core features of SD
 exemplary nature
 focus on interaction between objects
 uses a timeline

Sequence Diagrams (SD)

sequence diagrams statecharts

interaction of several objects behavior of one object

exemplary complete

no internal state state based
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Example: Sequence Diagram

analyze

copper912:
Auction

bidPol:
BiddingPolicy

timePol:
TimingPolicy

validateBid(bid)

return BiddingPolicy.OK

return t

newCurrentClosingTime(copper912, bid)

t.timeSec == bid.time.timeSec 
+ extensionTime

SD Bid
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Example: Sequence Diagram

OCL constraint describes property at 
that timepoint

copper912:
Auction

bidPol:
BiddingPolicy

timePol:
TimingPolicy

validateBid(bid)

return BiddingPolicy.OK

return t

newCurrentClosingTime(copper912, bid)

objects

timeline

method call

return activity bar

t.timeSec == bid.time.timeSec 
+ extensionTime

SD Bid
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Terms for Sequence Diagrams

• Object: used as in the object diagram, only with the 
object name and type (no attribute values)

• Timeline describes the time elapsed of the object 
from top to down
 no true scaling, but temporal order

• Interaction takes place between two objects
 trigger is a stimulus (as discussed in statecharts)
 parameters of interactions can be omitted

• Activity bar show the activity duration of a method call
 activity bars can be represented nested in object 

recursion

• Logic condition describes a property at a certain point 
of time

copper912:
Auction

bidPol:
BiddingPolicy

timePol:
TimingPolicy

validateBid(bid)

return BiddingPolicy.OK

return t

newCurrentClosingTime(copper912, bid)

t.timeSec == bid.time.timeSec 
+ extensionTime

SD Bid
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Forms of Interaction

• arrow types describe several forms of interaction 

• for software
A1) method call and 
A2) asynchronous message/signal transfer 

(not distinguished from method call)
B) result of a previous method call (return)
C) exception (as abnormal termination)

• for systems:
D) flow of physical items

flow of energy (i.e. power, heat, etc.)
… and of course also data and messages

• The “objects” are the very same as in the object 
diagrams and SysML’s IBDs, possibly tagged with 
their kinds

Exceptiontype(arguments)

Exceptiontype

C)

return result

return

B)

methodname(arguments)

methodname

methodname(...)

A1 & A2)

Car(No. AC-K-553)

Electrical Power

D)

«data»
:Auction

«block»
:Camera
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new BidMessage(...)

• If an object doesn’t exist yet at the at the beginning of 
the observation, but it will only be provided during 
creation then it is placed at the creation point.

• For C++ processes a similar construct exists for the 
destruction of an object. 
 Target language Java does not require this.

Object Creation via Constructor 

SD
copper912:

Auction

bm:
BidMessage

object is created here
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• Example, how an object is created via a factory:

• However: abstract representation (i.e. omission of 
intermediate actions/objects) is useful
 Here: omission of the factory in the model 

(although it will be needed in the code)

• The semantics of the SD has to permit this

Object Creation with Factory

SD

SDcopper912:
Auction

bm:
BidMessage

getNewBidMessage(...)

bm:
BidMessage

getNewBidMessage(...)

f: Factory

new 
BidMessage(...)

return bm

copper912:
Auction
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• SD also has its own predefined stereotypes
• Example: 
 «trigger» marks the call, that triggers the interaction of the sequence diagram
 used for e.g., modeling of tests:

Stereotypes

«trigger»
starts 

the test

«trigger»
handleBid(bid)

validateBid(bid)

return BiddingPolicy.OK

:AuctionTest
copper912:

Auction
bidPol:

BiddingPolicy

SD
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• OCL condition characterizes a property, that holds at a specific point (i.e. in the middle of the execution):

OCL Constraints in the Sequence Diagram

copper912:
Auction

bidPol:
BiddingPolicy

timePol:
TimingPolicy

theo:
Person

sendMessage(bm)

validateBid(bid)

newCurrentClosingTime(copper912, bid)

t.timeSec == bid.time.timeSec 
+ extensionTime

copper912.currentClosingTime==t  &&  theo.message.last==bm

return t

SD

OCL constraints
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• OCL constraint must hold exactly during a specific 
point in the execution

• Variable names that can be used in OCL constraints:
 all object names
 attributes of the objects, whose timelines are touched
 arguments of previous method calls

• Auxiliary Variables in Sequence Diagrams can be 
introduced with the let construct
 in analogy to the let variables in pre-/postconditions for 

reuse in later OCL conditions

OCL Constraints in the Sequence Diagram

SD

SD

ba

method(...)

condition

condition2

condition applies 
immediately after 
the interaction

sendMessage(bm)

theo.message.size == m +1

let int m = theo.message.size

copper912:
Auction

theo:
Person

introduction of 
auxiliary variable
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• Booking a ticket at the counter

• Money withdrawal

• Money transfer

• Direct phone call 

• Phone call via operator

• Was one SD sufficient?

Examples: Sequence Diagrams for ...

exercise

MBSE
13. Interactions with Sequence Diagrams 
13.2. Semantics

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen 
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• A sequence diagram describes a period in a process 
of the system:
 the object set is incomplete
 arguments of method calls may be missing
 further interactions take place before and after the shown 

ones
 more interactions could even happen in between

 the same sequence can occur multiple times
 it may even occur temporally overlapping
 it may also not at all occur

 What is the semantics of a sequence diagram?

 What does a sequence diagram tell us?

Exemplary Nature and Incompleteness of SDs

SD

validateBid(bid)

return BiddingPolicy.OK

copper912:
Auction

bidPol:
BiddingPolicy
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• is based on a mathematical mapping of
 prototypical objects in the SD to real objects of the system
 interactions of the SD to real interactions in the system
 (for precise definition see: B. Rumpe: Modeling with UML)

Precise Meaning of a SD

time

the real objects of the systems

validateBid(bid)

return BiddingPolicy.OK

copper912:
Auction

bidPol:
BiddingPolicy

illustration of the sequence 
diagram in the system process

SD
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• To model that all object interactions that are taking place during the period of observation are shown
tag «match:complete» (short: ©) is used

• «match:complete» prohibits all other interactions in between

Complete Representation of Interaction

return BiddingPolicy.OK

copper912:
Auction

bidPol:
BiddingPolicy

SD

validateBid(bid)

©
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Nearly-Complete Interaction Shown 

validateBid(bid)

return BiddingPolicy.OK

copper912:
Auction

«match:visible»
bidPol:

BiddingPolicy

SD

Ok.

• All interactions with other visible objects that are taking place during the period of observation are shown when
tag «match:visible» is used

• «match:visible» prohibits that other interactions in between with visible objects:
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• Any other interactions are possible 
• Tag «match:free» (short: ...) permits all other interactions in between

Interaction Shown Incompletely

validateBid(bid)

return BiddingPolicy.OK

copper912:
Auction

SD

Ok.

Ok.

bidPol:
BiddingPolicy

...
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• Non-causal SD is a SD, in which the effect chain  
(causality) is not clear
 Examples 1 and 2: why did method2(…) occur?

• These are non-causal but possible observations
 In SD 1, e.g.. due to a not represented interaction from a to c 

(from b to c or an unknown object to a and c)

• In concurrent systems a temporal order may have 
causal reasons, but may also be based on pure 
coincidence.

• Causal SD can relatively well be used for constructive 
code generation
 Step 1: Merge all SD into a kind of “regular expression” over 

interactions
 Step 2: Transform this into state machines for each 

participating objects/component individually

Non-causal SD

b ca

method(...)
method2(...)

SD 2

ba

method(...)

c d

method2 (...)

SD 1
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Object Recursion in SD

• In OOP Method calls have a corresponding return 
interaction
 these interactions may be nested

• Method recursion: the same method is called again 
with other arguments

• Object recursion: the same object is called again
 Which may be the same method (or another)

• Object recursion is very common in OOP, many 
design patterns use this

(b) indirect object recursion

a

method(...)

method1(...)

b

(a) direct object recursion

a

method(...)

return

SD

Software Engineering  |  RWTH Aachen532

Object Recursion introduces Underspecification

• SD 1 is a correct as a description of an observation

• However, the observation is incomplete (some details 
are not shown) 
 e.g. it is underspecified in what causes e.g. method3(…)

• Possible clarifications are SD 2 and SD3

ba

method3(...)

method2(...)

method1(...)

SD 1

ba

method1(...)

method3(...)

method2(...)

ba

method1(...)

method3(...)

method2(...)

SD 3SD 2
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• A:   A SD can describe an observation:
 A1: generated from an execution protocol for “debugging” 

(those are usually lengthy and detailed)

 A2: manually developed during the analysis activity
(used to specify desired interactions. e.g. in tests)

• B:   A SD can be a constructive description of a 
necessary execution order:

 e.g. if it is the only possible, unique execution order with 
no alternatives (unfortunately, this is rare)

• C:   A SD can be a test driver:
 «trigger» interactions are driving the test,
 the other interactions are modelled as observations.

+ more

Methodical Use of SD

SD

validateBid(bid)

return BiddingPolicy.OK

copper912:
Auction

bidPol:
BiddingPolicy
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Possible methodical uses of SD with Statecharts:
A: 1. SD as exemplary description from which 

2. Statecharts are synthesized, or 

B: given Statecharts are analyzed by 
review of specific system runs (SD)
 simulations of a Statechart produce SDs

(→ close to process analysis)

C: 1. SD and statecharts developed independently 
as two viewpoints of the system and 

2. checked for consistency through 
2a. appropriate matching techniques 

(call sequences, etc.) or 
2b. through code generation from statecharts, 

test case generation from SD

• Further reading: Ingolf Krüger, LSC of D. Harel, et al.

SD and Statecharts

SD
:TimeControl

copper912:
Auction

finish()

Statechart

start()
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• Collaboration diagrams describe the same information as SDs
 but another form of presentation
 instead of a timeline, message/interaction ordering is indicated through numbers (1, 1.1, 1.2, 2, ...)
 collaboration diagrams are rarely used today

Collaboration Diagram vs. Sequence Diagram

4: sendMessage(bm)

2: newCurrentClosingTime(copper912, bid) 3: writeToProtocol(
“Auction 912, Bid ... accepted”)

1.1:
getAuctionStatus

1.2: getBestBid

1: validateBid(bid)
bidPol:

BiddingPolicy

theo:
Person

:Protocol
timePol:

TimingPolicy

copper912:
Auction

numbering defines 
order of 
occurrence;
sub numbering like 
in book chapters

Collaboration 
diagram
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• History of SD:
 Sequence diagrams were a variant from message 

sequence charts (MSC) that are used in the 
telecommunications field in combination with SDL

• Extensions for MSC's
 concatenation, alternatives, repetition, parallel operations, 

recursion
 with these enhancements SDs are more expressive, 

since e.g., the alternative processes and iteration can be 
described

 comparable to formal languages:
 single string = simple SD
 regular expression = extended SD (without 

recursion)
 context-free language = extended SD (with recursion)

 further extensions in Harel’s Life Sequence Charts

Variants / Extensions for SD 

SD

validateBid(bid)

return BiddingPolicy.OK

copper912:
Auction

bidPol:
BiddingPolicy
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Summary for Sequence Diagrams

• A SD consists in its basic form of:
 Objects (with name and type)
 Timeline for objects
 Interaction pattern
 Activity bars
 Conditions

• A SD describes an exemplaric behavior
 extensions like «match:complete» allow to give SD more 

rigorous semantics

• SD can be checked with Statechart for consistency

• SD can be used for test case definition

• SD can be used for cutting out code

copper912:
Auction

bidPol:
BiddingPolicy

timePol:
TimingPolicy

validateBid(bid)

return BiddingPolicy.OK

return t

newCurrentClosingTime(copper912, bid)

t.timeSec == bid.time.timeSec 
+ extensionTime

SD Bid
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Systems Engineering Concepts we Already Know

Development 
activity

Model language

conforms to

produced by

used for

Development 
method

hierarchically 
consists of

uses

Actor

Developer Tool
Project

Model executed by

Theory
contains

is sound
foundation 

for

enables

• The concept model illustrates some relevant concepts and their relationships.
• In this chapter we introduced: model, development method, and their underlying theory.

Concept
model

Rep.
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Systems Engineering is an Interdisciplinary Approach for the Realization of Systems

Definition (INCOSE 2016): 

Systems Engineering (SE) is an interdisciplinary
approach and means to enable the realization of 
successful systems.

It focuses on 
• holistically and concurrently 

understanding stakeholder needs; 
• exploring opportunities; 
• documenting requirements; and 
• synthesizing, 
• verifying, 
• validating, and 
• evolving solutions 

while considering the complete problem, from system 
concept exploration through system disposal.

US Department of Transportation

INCOSE

A method decomposes the big problem 
into smaller, manageable activities

Rep.
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• “Process”  vs. “method” vs. “development model”
 Some say: Process tells only what, method also how
 Others say: Process is a concrete instance of the method 

(= development model) for a concrete project
 Sometimes: synonymous use.

Systems development life cycle

• A systems development process is the process of 
dividing system development work into smaller 
activities to improve design, product management, 
and project management. 

• It is also known as a systems development life cycle 
(SDLC).

• Typical distinct activities
 planning, 
 requirements gathering, 
 analysis,
 design,
 implementation,
 testing, 
 deployment.

• and additional activities
 architectural exploration, 
 verification, 
 validation 
 evolution,
 maintenance,
 bug fixing,

US Department of Transportation
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The Waterfall Model

Design

Implementation

Test,
Integration

Maintenance

W. Royce (1970)

product-
definition

design
specification

code

validated 
code

Change requests

Analysis

Software Engineering  |  RWTH Aachen545

• Implementation (also: Construction)
 Coding, 3D-printing, any other form of construction and 

production.

• Testing
 Any form of analyses, experiments, executions or 

reviewing of development artefacts, subsystems or the 
system that ensures desired quality.

 Subsumes: Validation against stakeholder requirements 
and verification against design artefacts.

• Maintenance
 Keeps a product in good condition by adapting it to 

changed needs, checking it, and repairing it when 
necessary. 

 Subsumes: Evolution (in the small), bug fixing

Most Important Development Activities

• Requirements analysis
 Requirements, problems, objectives, and resources are 

identified. Stakeholders are involved. 
 Clarifies: “What to do?”
 Subsumes: requirements elicitation, business analysis, 

system analysis

• Architecture
 Defines the overall structure, i.e. the big picture. 
 Explores alternatives.

• Design
 Defines a fine-grained specification of system elements. 
 Clarifies: “How to do it?”
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Concept Model for Development Methods and Projects

Iteration

Developer

subtasks

Task

Project

Phase

Concept
modelDevelopment 

Method has

has

Development 
Activity

hierarchically 
consists of

Artefact

executes

isOfKind

Role

assumes

Method definition

Artefact-Type

reads

updatescreates

subactivity

isOfKind

Project (method application)

done
by

reads

updatescreates
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Quality Assurance in the V-Model

Analysis

Architecture

Design

Implementation

Acceptance test

System test

Integration test

Unit test

Test cases

Test cases

Test cases

Boehm 1979 (initial, old „V-Model“)
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• Rather useful for smaller projects or experimental systems
• But is increasingly used for larger projects
• Predecessor of methods Extreme Programming and Scrum

Evolutionary Development

Requirements

Prototypes,
Incremental versions

Analysis

Design Validation

Implementation
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The Rational Unified Process (RUP) decouples Activities and Phases

Rational Unified Process 1999 (Jacobson et al., Kruchten)

time

Analysis

Design

Implementation

Test

Configuration
management

Project
management

Inception Elaboration Construction Transition

activity
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RUP supports labor distribution 

Rational Unified Process 1999 (Jacobson et al., Kruchten)

time

Analysis

Design

Implementation

Test

Configuration
management

Project
management

Inception Elaboration Construction Transition

activity
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RUP: Example Workflow for Architectural Design

Workflow Details:
Roles, Activities
and their Artefacts

in the Architectural
Design Workflow

Architect

Review the 
Architecture

Supplementary 
Specifications

Identify Design 
Elements

Architecture 
Reviewer

Incorporate 
Existing Design 

Elements

Identify Design 
Mechanisms

Risk List

Software 
Architecture 
Document

Design 
Guidelines

Design 
Model 

Analysis 
Model
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Scrum, XP: Highly Iterative Development Processes
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Development Methods

• A systems development process organizes its 
activities in phases and iterations. 

• Phase 
 Structure for larger projects 

• Iteration
 A concrete project may have variably many iterations

• Waterfall: identifies phases = activities, no iterations

• RUP: has 4 phases, with many iterations in-between
 Separates phase from activity (such as “design” act.)

• (Todays) V-Model: several iterations, with phases in-
between

• XP: only iterations, no explicit phases

Iteration

Developer

subtasks

Task

Project

Phase

Concept
model

has

has

Artefact

executes

reads

updatescreates
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The Methodological Pyramid

• Process models, such as RUP, V-Model, define the 
overall development process .

• They are composed of an appropriate set of 
development tasks and activities, such as “elicit 
requirements”, “review the architecture”

• To accomplish these tasks a large set of “micro
methods”, e.g. using a best practice, a design 
pattern, tools for analysis, generation or synthesis, 
tools for evolution and transformations, etc.

• All these tasks are finally executed on the set of 
artifacts, that contains all relevant development 
information, such as requirements, all kinds of 
models, tests, code.

artifacts: models, 
diagrams, code

micro-methodology, analysis, 
transformation, generation

development tasks 
and activities, 

process patterns

process
models

Rep.
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Requirements Design Test
Safety-
assessment

Summary as a Concept Model

Function

Model

System

• Systems and their functions are described by models, which are part of various
development activities

Concept
model

realizes
*

describes
Context

has

Development 
activity

Realization 
(Implementation)

Deployment
Production-
planning

Architecture
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• Opportunities of Model-Based Systems Engineering
 consistent, related models ensure integrity and enable 

traceability
 Enables top-down design decisions and drivers
 Automated change propagation, ambiguity checking
 Automated tracing of (changing) requirements to 

(changing) implementations

• Model-Driven: 
 Models even drive and guide the process
 Models are primary development artifacts

Please recapitulate earlier chapter on Systems Engineering

• Traditional Systems Engineering is Document-Based

• Model-Based Systems Engineering is the formalized 
application of modeling to support system 
requirements, design, analysis, verification and 
validation  activities beginning in the conceptual 
design phase and continuing throughout development 
and later life cycle phases.
 INCOSE SE Vision 2020

Rep.
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V-Model: A Standard Process to Develop Software

• The V-Model has 
 a constructive left wing:
 from requirements to coding

 and a quality assurance and testing right wing:
 From unit tests to acceptance tests

 Each activity on the left corresponds to tests on the right

 The V-Model assumes manual work in all activities, 
it is agnostic to models and automation

 In practice: more than 2/3 of the work happen on the right 
side
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System Specification

Sx1 : T1

y4 : T’4

x4 : T4

x3 : T3x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

Validation

Architecture  
design

architecture  
verification
S  C1C2C3

Components implementation

Verification R1  C1 R2  C2 R3  C3

Integration

R = R1R2R3

System 
delivery

System 
verification

R  S

Rx1 : T1

y4 : T’4

x4 : T4

x3 : T3x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

Informal 
requirements

from M. Broy:
Systems Design

V-Model with Functional Decomposition
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Agile Development in Engineering, Materials and Business 

From our RWTH Internet of Production Excellence cluster (IOP)
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• Model based Systems Engineering 2.0

V-Model and MBSE

From David Long, Vitech, 2019
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ISO 26262-1, Road vehicles — Functional safety

• ISO 26262-1   standard for vehicles

• Goal: quality of products

• Mechanism: 
 Enforces dedicated development and operation 

activities, 
 Organized in a development process

• Tries to be abstract
 Allowing individual arrangements for each activity
 Neither concrete tool, nor languages enforced

• V-Model compliant (if not enforcing)
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Model-Driven Architecture (MDA)

application classes define data structures

system complete and running system

technical class diagram
adaptation, extension, technical design

T

T T T

T T T

T

+ behavior for technical classes

code generation
+ integration with manually written code

state machines describe states and behavior

use cases and scenarios: 
sequence diagrams describe users’ viewpoint

Requirements
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• Not much reuse (libraries …)

• Tool chain too deep
• No efficient tools
• Tracing problems
• Evolution is awkward

• Lot of information missing, e.g., 
 design rationale
 non-functional requirements

• “Agile” development is not possible

• SE-Models are not integrated with other Engineering 
Models (spatial, biological, ...)

Problems of Model Driven Architecture

system

T

T T T

T T T

T

Requirements
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Agile UML-based Software Development: Constructive Use of Models for Coding and Testing

consistency
analyzer

“smells” &
errors

parameterized
code
generator

system

test code
generator

tests

statecharts
class 
diagrams

C++, 
Java …

deployment 
diagram

sequence 
diagrams

object 
diagrams

__:

__:

__:

OCL
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Produkt Entstehungs Prozess (PEP)

From Eigner, et.al. 2014
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Koller/Kastrup: Construction Process

• Activities and intermediate results (“stations”)

• Six constructive activities
 Each accompanied with analysis techniques for quality 

assurance
 Functions
 Effects leading to the functions
 Carriers of these effects
 Physical layout
 Surface design
 Checks with prototypes

• It correctly decouples a project into manageable 
activities, but looks like waterfall

Software Engineering  |  RWTH Aachen568

V-Model variant: the BMW SMArDT Process

From [DGH+19] I. Drave, T. Greifenberg, S. 
Hillemacher, S. Kriebel, E. Kusmenko, M. 
Markthaler, P. Orth, K. S. Salman, 
J. Richenhagen, B. Rumpe, C. Schulze, 
M. von Wenckstern, A. Wortmann: 
SMArDT modeling for automotive software 
testing. In: Software: Practice and Experience, 
49(2):301-328, Feb. 2019. 
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SMArDT Process Layers
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Many Viewpoints

• Many Viewpoints for many stakeholders

• And many different modelling languages 
assisting these viewpoints

• This is why it is essential to ensure 
interoperability and consistency between 
models in a heterogeneous situation.

• Problem:
 Tool manufacturers are not easily capable to 

achieve this

 Manual transfer work is often needed

 Consistency when evolving parts of the 
models?
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Features of the UML

• Elements for specification, communication
and documentation
 among developers
 developers with users
 union of several previously existing methods

• Set of modeling concepts and concrete notations 
• Standardized since September 1997 by OMG
• Developed by Booch, Rumbaugh, Jacobson, Selic, 

Kobryn, Cook and many others...

The Unified Modeling Language: Object-Oriented Modeling for Software-Intensive Systems

Goals of the UML

• Description of essential properties of a program 
(like a blueprint)

• Structuring of problem and solution

• Abstraction of implementation details

• Definition of various views:
 task assignment and workflows
 software and system architecture
 interaction between components
 behavior of components
 implementation
 physical distribution

Software Engineering  |  RWTH Aachen573

Overview of UML Diagram Types to Start

Diagram type The central question answered by this 
kind of diagram

Strengths

class diagram Which classes form my system and how are 
they interrelated?

Describes the static structure of the system.
Contains all relevant structural connections and 
data types.
Bridge to dynamic diagrams.

package diagram How can I partition my program in order to 
retain an overview?

Logical group of model elements. 
Modeling dependencies/inclusion is possible.

object diagram What is the internal structure of my system 
at a specific moment at runtime.
(snapshot)?

Displays objects and attribute values at a 
specific moment.
Used as example for illustration.
Level of details is the same as in the class 
diagram. 

Software Engineering  |  RWTH Aachen574

Overview of Diagram Types – 2

Diagram type The central question answered by this 
kind of diagram

Strengths

composite structure diagram What is the inner structure of a class, a 
component, a part of the system?

Perfectly suited for top-down-modeling of the 
system (part-whole-relationship).

component diagram How are my classes aggregated in 
reusable, manageable components and in 
which ways are these components related 
to each other?

Shows the organization and dependencies of 
specific components of the system.

deployment diagram What is the operational environment 
(Hardware, Server, Databases, …) of the 
system? How are the components 
distributed at runtime?

Displays  the runtime environment of the 
system with the ‘tangible’ system components.
Presentation of ‘Software  Server’ is possible.
High level of abstraction, only few notational 
elements.
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Overview of Diagram Types – 3 

Diagram type The central question answered by this 
kind of diagram

Strengths

use case diagram What does my system provide to its 
environment?
(neighbor systems, stakeholders)?

External perspective of the system.
Suitable for context identification.
Strong abstraction, simple notation.

activity diagram How does a flow-oriented process or 
algorithm execute?

Very detailed visualization of processes with 
conditions, loops, branching.
Parallelism and synchronization.
Representation of data flow.

state machine diagram Which states can an object, an interface, a 
use case , etc accept and by which events 
are these states triggered?

Precise mapping of a state model with states, 
events, concurrency, conditions.
Enter and exit actions.
Nesting possible. 

sequence diagram Who exchanges which information with 
whom and in which order?

Presentation of information interchange 
between communication partners. Accurate 
representation of the temporal order, including 
concurrency.
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Overview of Diagram Types – 4

Diagram type The central question answered by this 
kind of diagram

Strengths

communication diagram Who communicates with whom? 

Who is cooperating in the system?

Represents the exchange of information 
between communication partners.
The focus is to give an overview. 
(Details and timing less important).

timing diagram When are interaction partners in which 
state?

Visualizes the exact timing behavior of classes, 
interfaces, protocols, ...
Suitable for detailed observations, where it is 
important that an event occurs at the right 
time.

İnteraction overview diagram How do interaction fit together? Combines interaction diagrams (sequence, 
communication and timing diagrams) to a 
top-level.
High level of abstraction.
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• SysML is dedicated to model the software part of 
(embedded) systems

• It started as variant of UML, but will probably become 
independent (with 2.0)

• SysML reuses 7 of UML's 14 diagrams, and adds 2 new 
diagrams 
 requirement and parametric diagrams

Systems Modeling Language SysML

2007: SysML 1.0
2008: SysML 1.1
2010: SysML 1.2
2012: SysML 1.3
2015: SysML 1.4
2017: SysML 1.5

2019: SysML 1.6

2023: SysML 2.0

Rep.
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• Models are the central notation 
in the development process

Model-Driven Development

models

simulation

dimensioning of system

constructive: 3D-printing
code generation, synthesis

automated tests

refactoring/
transformation

documentation

• Models can serve as central notation for systems development
• A good modeling language can be used for analysis and synthesis

analysis

rapid prototyping

design
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• Overview of methods
 XP, Scrum, V-Model, RUP,

• Overview activities in a project
 Analysis, design, implementation, testing + planning 

• Agile, model-based systems development
 Using SysML models

• Automation using tools
 Generation
 Consistency checking

Summary

US Department of Transportation

INCOSE
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• OMG UML 2 description (www.omg.org): 

 Notation Guide, Semantics, Metamodel, OCL, Summary

• Martin Fowler, Kendall Scott: UML Distilled

• Desmond D‘Souza, Allan Wills: Objects, 

Components, and Frameworks with UML, 

The Catalysis Approach

• Mario Jeckle, Chris Rupp, Jürgen Hahn, 

Barbara Zengler, Stefan Queins: 

UML 2.0 glasklar (German)

• Martin Hitz, Gerti Kappel: UML @ Work

Literature on UML
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Classical vs. Agile Processes

Analysis

Design

Implementation

Test

Release

T
im

e / P
rogress

Time / Progress

70% Progress
0%    usable

40% Progress
30%    usable

Waterfall Process (V-Model, RUP)
• Activities are chronologically separated in phases

Agile Process
• Activities organized in short sprints/intervals

Agility and Evolution live from many small iterations

Analysis

Design

Implementation

Test

Release
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Development Processes … Scrum, XP

Software Engineering  |  RWTH Aachen584

• Artefacts: 
 Product Backlog, 

Sprint Backlog and 
Burndown Chart.

• Sprint
 Time-boxed phase to 

develop the product
(usually short)

• Sprint Backlog
 List of User Stories (and 

bugs) to deliver

Scrum
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Burndown Chart shows actual state and desired plan of work progress within a sprint

Scrum Burndown Chart
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• Light-weight, agile software development method
 Comprises values, principles and practices

• Omits elements of software development: 
 Documentation, partitioning into (longer) phases

• Primary focus on
 Source code, tests, communication
 Short development iterations

• Needs: smaller teams, no life threats in product,   available customer

• Consequence: XP cannot be used for every kind of project!

Extreme Programming (XP)

XP
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– Simplicity
 Clarity, elegance

– Support Changeability
 To achieve flexibility and

reduce costs of errors

Fundamental Principles of XP

– Fast feedback
 Continuous project management

– Incremental Changes
 No big-bang integration
 Quantifiable progress

– High Qualitative Results
 Ensured by different measures: 

testing, pair programming

XP
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• Simple design

• Testing

• Refactoring

• Pair programming 

• Common code ownership

• Rigorous coding guidelines

XP development best practices

Some of the most important: 

• Planning game

• 40 h. week

• Continuously available customer

• Small releases 

• Continuous integration

 Observe: XP is a very rigorous process
XP
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Testing in XP

• … is most important in XP!

• Parallel development of code and tests
 Best is “Test first”!

• Only fully automated tests
 Setup of test
 Execution
 Evaluation of result to “green” or “red”
 And: avoid manual test and debugging

• e.g. using junit, cppunit, etc.
• For all languages incl. Simulink available

• Run the tests every commit & every night

• In systems engineering: Test with simulations.
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Summary: Various Development Methods fit Specific Project Needs

Iteration

Developer

subtasks

Task

Project

Phase

Concept
modelDevelopment 

Method has

has

Development 
Activity

hierarchically 
consists of

Artefact

executes

isOfKind

Role

assumes

Method definition

Artefact-Type

reads

updatescreates

subactivity

isOfKind

Project (method application)

done
by

reads

updatescreates

Rep.
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• The term test means the process of planning, the 
preparation and the measurement, with the aim of 
determining the characteristics of a system and to 
demonstrate the difference between the current and 
the required condition.

What is Testing? Definitions:

• Testing is the process of executing a program with 
the intent of finding errors. 
(Myers: The Art of Software Testing '79)

• Software testing involves executing an 
implementation of the software with test data and 
examining the outputs of the software and its 
operational behavior to check that it is performing as 
required. 
(Sommerville: Software Engineering ‘19)
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• A collection of tests form a software system on their 
own, which runs in conjunction with the system under 
examination.

• Tests should be automated.

• An automated test performs 

 (1) the setup of the test data, 

 (2) the test and 

 (3) examination of the test result. 

Success or failure of the test are detected and reported by 
the test run (green light).

Testing Activities

• A test executes the system under test.

• A test is exemplary.

• A test is repeatable and determined.

• A test is goal-oriented.

• A test of a modified system can show behavioral 
equality with the original system exemplarily.

 i.e. Regression testing
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Test Levels

Test type Who created the test 
(or executes it)?

Test candidate

acceptance test users, mostly 
interactive

the installed 
product

system test 
(“acceptance test”)

test team with the help 
of users

the instrumented 
production system 
in the test 
environment

subsystem test 
(“integration test”)

test team, developers subsystem

component test 
(“class test”,  
“module test”, 
“unit test”)

developers, test team component, class

function test, 
method test

developers function, method

Requirement 
Analysis

Acceptance 
Testing

Implemen-
tation

System 
Design

System 
Testing

Architecture 
Design

Integration 
Testing

Module 
Design

Unit Testing

Acceptance Test Design

System Test Design

Integration 
Test Design

Unit Test 
Design
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• Omission is the lack of required functionality.

• Surprise is code that does not support any required 
functionality and is therefore useless.

Terminology: Error

• Failure is the inability of a system or component to 
provide a required functionality within the specified 
limits. 

• Failure manifests through wrong output, incorrect 
termination, or violation of time and storage 
conditions.

• Fault is a missing or incorrect code.

• Error is an action taken by the user or an 
environmental system that causes a failure.

Basics
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• Test suite: set of test cases

• Test run: execution of a test with actual results

• Test driver organizes the test run from the setup of 
the test data until the examination of the success of 
the test.

• Test success iff actual result and expected result are 
compliant. Otherwise, the test has failed.

• Test verdict: statement on whether the test 
succeeded or failed.

Terminology: Test

• Test object = system under test (SUT), system to be 
tested, test item, testee

• Test procedure: method how to create and carry out 
tests

• Test point / test data: concrete set of values for the 
input of a test, including object structure and objects 
to be tested

• Expected test result: the expected outcome of a test.

• Test case: description of the state of the test object to 
be tested and the environment before the test, the 
test point and the test result (includes test point + 
expected result).

Basics
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Structure of a Software Test

test candidate
(method(s))

o1

o3 o4

o2

o1

o3 o4

o2

u1

u2

u3

interfaces to the environment,
simulated with dummy objects

test point: objects and
links for the start state

result of  
executing SUT

o5

invoked method
(SUT)

database connection

graphical UI

neighboring subsystem
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Structure of a Software Test

test candidate
(method(s))

test point definition: 
Object diagram describes 
the start state

result of  
executing SUT

invoked method
(SUT)

o1

o3 o4

o2
OD

test point: objects and
links for the start state

SD test driver may be complex
SD drives the test and
describes observations

OD

OCL

expected result and 
OCL predicates are 
used as test oracleo1

o3 o4o5

o2

Java
or
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Structure of a CPF Test

• Test driver etc. is also CPF
 test service channels help to setup the CPF Under Test

• A test provides a sequence of data, energy material 
to the interface

• Energy and material and their components need to 
be simulated
 Data can remain as is, but may be transport and some 

processing components are simulated as well

• Output sequence is checked accordingly
 test service channels are used to check internal state

• Test result: typically also contains detailed results

• CPF itself can be composed or an atomic function
 Various forms of subsystems can be tested

CPF 
Under Test

Testing System:
Test Setup, Driver, Result Comparison

«material»

«data»

«energy»

«material»

«data»

«energy»

𝔹 verdict

CPF

test-services
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Dummies, Mocks

• Critical
 interfaces to the environment of the test candidate

• These are simulated by dummies
a) to prevent side effects
b) to check correctness of access
c) to audition prepared results

• Dummies substitute real environment
 database
 neighboring systems: physical components 
 GUI

• Mocks are dummies with some intelligence 
(e.g., answering requests intelligently)

• Mocks can be part of testing system, but also replace  
part of the CPF Under Test.

CPF 
Under Test

Testing System:
Test Setup, Driver, Result Comparison

«material»

«data»

«energy»

«material»

«data»

«energy»

𝔹 verdict

CPF

test-services

simulation
«data»

Dummy
& Mock

simulation
«data»
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• Knowledge about the system functionality is stored in 
repeatable tests. 

• Comprehensive set of test cases and system 
specification are two models of the system.

• Testing effort is reduced. Manual regression tests and 
simulations would be too costly in the long run.

• Detailed test collection documents the quality of the 
system for the customer.

Effects of Automated Tests and Simulations

• Test with failure of the SUT documents an error.

• If all tests are successful:
• Developers’ confidence in their own development and 

the results of colleagues is significantly higher. 

• Increased self-confidence of a developer to adapt 
someone else's models.

MBSE
15. Testing and Simulation
15.2. Object Diagrams to Model Test Data

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen 

http://www.se-rwth.de/

Farbe!

Software Engineering  |  RWTH Aachen603

• Test data definition: 
 OD describes the start state
 test data is sometimes complex, but only small number of 

them is needed. Highly reusable (if tuned to specific 
needs)

• Test driver may be 
 complex SD that drives the test and describes 

observations (usually compact, short)
 or just program code to call the desired methods

• Test oracle 
 OD describes the expected (changed) result possibly 
 refined by OCL predicates
 Result OD needs to models differences only (i.e. usually 

also compact)

• Reusability of diagrams allows effectivness

Structure of a Software Test

test candidate
(method(s))

result of  
executing SUT

invoked method
(SUT)

o1

o3 o4

o2
OD

test point: objects and
links for the start state

SD

OD

OCL
o1

o3 o4o5

o2

Java
or
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• Initial situation (simplified):

Example: Opening an auction - 1

a1213:Auction

long    auctionIdent = 1213
String  title = “fast drill“
/int      numberOfBids = 0

…
timePol:ConstantTimingPolicy

int status = TimingPolicy.READY_TO_GO
boolean isInExtension = false
int extensionTimeSecs = 180

OD YetClosed
… …
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• Expected result: auction open

• And it shall hold:

Example: Opening an auction - 2

a1213:Auction
…

timePol:ConstantTimingPolicy

int status = TimingPolicy.RUNNING
boolean isInExtension = false

OD Running
… …

start:StatusMessage

int newStatus = StatusMessage.START

…
welcome:TextMessage

…

0 1

OCLcontext Auction a inv NoBidYet:
{ m in a1213.message | m instanceof BidMessage }.isEmpty
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• Description of a test

test object: Auction.start();
test data:   OD YetClosed;
driver: a1213.start();
assert: OD Running; 

inv NoBidYet; inv Bidders1;

• The generated code

testStart() {
Auction a1213 = setupYetClosed(); // generate test data 
a1213.start(); // run the test 
assert isStructuredAsRunning(a1213); // expected results met?
checkNoBidYet(a1213); // property NoBidYet
checkBidders1(a1213); // invariant Bidders1

}

• The diagrams and OCL are implemented as discussed.

Example: The Test

Java/P

Test

1

2

3

4

5

6

7

8

11

12

13

14

15

16

17

10

9
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General Test Case Structure

A test with all its elements can look like this. Often tabular representations are used as well:

test NameOfTest {
name: AuctionTest.testBid
test data: object diagrams prepare the test data 
tune: Java code allows fine tuning of the test data 
driver: Java method call(s) or sequence diagram
methodspec: OCL method specification checked for the method invocation 
interaction: sequence diagram used for monitoring the execution
oracle: Java method call or Statechart produces expected results; these are compared to real results 
comparator: Java-Code | OCL-Code compares actual and expected results
statechart: Statechart + an expected path  are checked
assert: object diagrams | OCL conditions | Java test code check actual result
cleanup: Java code cleans up used resources (e.g. data base)

}

1

2

3

4

5

6

7

8

11

12

13

14

15

16

17

10

9
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discuss

• Example: Java method, extended by invariants:

OCL Invariants are Used as Code Instrumentation

class Auction {
addMessage(Message m) {

ocl !this.message.contains(m);

let int oldMessageSize = message.size;
message.add(m);
ocl message.size == oldMessageSize +1;

for (Iterator(Person) 
ip = bidder.iterator(); 
ip.hasNext();){

Person p = ip.next();
p.receiveMessage(m);

}
ocl forall p in bidder: m in p.message;

}
}

Java/P

1

2

3

4

5

6

7

8

11

12

13

14

15

16

17

10

9

Person
…

Auction
… bidder

Message
…

{ordered}
* *

{ordered}

CD

*
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• Example: Java method, extended by invariants:

OCL Invariants are Used as Code Instrumentation

class Auction {
addMessage(Message m) {

ocl !this.message.contains(m);

let int oldMessageSize = message.size;
message.add(m);
ocl message.size == oldMessageSize +1;

for (Iterator(Person) 
ip = bidder.iterator(); 
ip.hasNext();){

Person p = ip.next();
p.receiveMessage(m);

}
ocl forall p in bidder: m in p.message;

}
}

Java/P

1

2

3

4

5

6

7

8

11

12

13

14

15

16

17

10

9

Person
…

Auction
… bidder

Message
…

{ordered}
* *

{ordered}

CD

*
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• ocl-keyword is similar to the assert keyword in Java 
but followed by OCL conditions

• Implementation of OCL conditions as 
 assert (in normal code),
 JUnit statement (tests), or
 simply omission in the production code

• Code instrumentation is especially effective in 
combination with lots of covering tests
 these extensively test the OCL invariants

• Invariants also give hints on where (more) tests 
should be defined, e.g., for boundary values

Code Instrumentation by Invariants

Java/Pclass Auction {
addMessage(Message m) {

ocl !this.message.contains(m);

let int oldMessageSize = message.size;
message.add(m);
ocl message.size == oldMessageSize +1;

for (Iterator(Person) 
ip = bidder.iterator(); 
ip.hasNext();){

Person p = ip.next();
p.receiveMessage(m);

}
ocl forall p in bidder: m in p.message;

}
}

1

2

3

4

5

6

7

8

11

12

13

14

15

16

17

10

9
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• Method specification can be used for testing.
• Code instrumentation:

• Problems with this approach
 code instrumentation may not be possible because source is not available 
 returns in the method body must be treated separately

Methods Specifications (Pre-/Postcondition)

context MyClass.method()
let   type a = value;
pre:  condition1;
post: condition2

class MyClass {
method() {

let type a = value;
ocl condition1;
// method body
ocl condition2;

}
}

OCL

class MyClass {
method() {

// method body
}}

Java

Java/P

11
12
13
14

01
02
03
04

21
22
23
24
25
26
27
28
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• Using subclassing: then instrumentation is not necessary

• Necessary: 
 subclass objects to be instantiated, 
 use of a replaceable factory/builder (design pattern)

 do not use static methods.

Methods Specifications (Pre-/Postcondition)

SubClass extends MyClass {
method() {

type a = value;
ocl condition1;
super.method();
ocl condition2;

}
}

context MyClass.method()
let   type a = value;
pre:  condition1;
post: condition2

OCL

class MyClass {
method() {

// method body (without return)
}}

Java

Java/P

11
12
13
14

01
02
03
04

21
22
23
24
25
26
27
28
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• Example: changeCompany
context Person.changeCompany(String name)
pre: company.name == name ||

forall Company co: co.name != name

• Case 1:
company.name == name

• Case 2:
forall Company co: co.name != name

• Case 3:
company.name != name &&
exists Company co: co.name == name

Test Cases Derived from Method Specification -1

• Basic idea:
 analyze method specification to discover cases that 

should be tested

• E.g. each clause of a disjunction of the precondition 
should be tested as a separate case
 This identifies two cases

• Additional case (3): 
what happens when a precondition (i.e. the 
disjunction) is not fulfilled at all?

OCL21

22

23

24

25

26

27

28

31

32

33

34

35

36

37

30

29
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• Example:
context int abs(int val)
pre:  true
post: if (val>=0) then result ==  val

else result == -val

• Case 1:
val>=0

• Case 2:
val<0

• Data covering these cases:
-n, -1, 0, 1, n (n large)

• In addition: use of postconditions

• Each case of the postcondition should be tested.
 appropriate test data must be found! 

• Often, the boundary values and their neighbors 
are of interest:
 Classical boundary cases: 

empty string, null, 0, empty containers

• In this example, meaningful test data are: 
-n, -1, 0, 1, n (n large)

• More about this techniques in test lectures!

Test Cases Derived from Method Specification -2

OCL21

22

23

24

25

26

27

28

31

32
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30
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Sequence Diagram as a Test Case Description

copper912:
Auction

timePol:
TimingPolicy

bidPol:
BiddingPolicy

sendMessage(bm)

validateBid(bid)

return BiddingPolicy.OK

return t

newCurrentClosingTime(copper912, bid)

theo:
Person

t.timeSec == bid.time.timeSec 
+ timepol.extensionTime

copper912.currentClosingTime==t  &&  theo.message.last==bm

:AuctionTest

«trigger»
handleBid(bid)

«trigger»
starts the test

OCL conditions 
check properties

«match:visible»
SD HandleBid

«match:visible» is 
well suited for tests
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• Test case description:
test object: Auction.handleBid(Bid bid)
test data: OD copper912 && OD BidStructure;
driver: SD HandleBid;
assert: ...

... And Associated Test Data

Test

copper912:Auction theo:Person

:Time

long     timeSec = 953647503
/String time = “14:54:03“
/String date = “February 21st 2000“ 

:Money

long     amount = 52290000
int        decimalplaces = 2
String   currency = “$US“

…… bid:Bid

OD BidStructure
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• JUnit is suitable as framework for SD tests
• setUp includes creation of the objects
• trigger maps to a simple method call

• More about JUnit under: www.junit.org

Sequence Diagram as Test Driver

:AuctionTest

«trigger»
handleBid(bid)

«trigger»
starts the test

Javaimport junit.framework.*;

public class AuctionTest extends TestCase {
Auction copper912;
Bid bid;
public void testHandleBid() {

setUp();
copper912.handleBid(bid)
// check assertions
tearDown();

}
}

1
2
3
4
5
6
7
8
9

10
11
12
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• Multiple triggers require multiple method calls.

Complex Trigger - 1

a: A b: Bt: Class

«trigger» stereotype 
marks constructive
implementation

return value

«trigger»
m2(args2)

«trigger»
m1()

«trigger»
m3()

otherMethod()

foreign method invocation is 
ignored by the code 
generation for the test driver

return result can be used in the 
arguments of the next method call

SD Treiber 
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• Triggers can be spread across several objects, this means a mock object is then be used in between.

• The mock object can also be generated from the SD:

Complex Trigger - 2

:Mocka: A:Test

SD MethodTest

b: B

«trigger» method()

the mock object realizes tasks of the test driver

«trigger» method2()

«trigger» method3()

«trigger» method1()
foo()
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Sequence Diagram as Observation

• When a part of the sequence diagram is to be 
observed as communication between the tested 
objects:

• Possible realization approaches 

 reflection / debugging API: 
not standard, not stable, thus better don’t use it

 instrumentation of object code 

 instrumentation of source code: only if available

 instrumentation by subclasses

copper912:
Auction

bidPol:
BiddingPolicy

validateBid(bid)

return BiddingPolicy.OK

SD

Software Engineering  |  RWTH Aachen623

Monitoring of Calls

• Calls between the tested objects need to be 
observed. Here we use:

 instrumentation by subclassing
 including a monitor for tracking method calls, their orders 

and arguments:

copper912:
Auction

bidPol:
BiddingPolicy

validateBid(bid)

return BiddingPolicy.OK

SD

Java
public class BiddingPolicyCheck extends BiddingPolicy {
Monitor m;
public BiddingPolicyCheck(Monitor m) { this.m = m; }

public int validateBid(Bid bid) {
m.callStarted(this, Monitor.ID_VALIDATE_BID, bid);
int result = super.validateBid(bid);
m.callEnded(this, Monitor.ID_VALIDATE_BID, result);
return result;

} }

1
2
3
4
5
6
7
8
9

10
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Monitor for Observation

Main characteristics of the monitor:

• Calls and returns are registered at the monitor 
 arguments are: caller, method identifier, arguments

• Examined are 
 order of the sequence of calls and returns  
 correctness of the arguments
 fulfillment of the invariants 

• Stereotypes «match:*» have impact on allowed 
observations :

 «match:free» for example allows an observed object to 
communicate with several others in a similar manner

Java
...
public int validateBid(Bid bid) {

m.callStarted(this, Monitor.ID_VALIDATE_BID,bid);
...
m.callEnded(this, Monitor.ID_VALIDATE_BID,result);

...

1
2
3
4
5
6

Monitor m
• Checks expected sequence of 

calls vs. actual method calls
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• Because of «match:free» object p may be ambiguous, because several persons may receive m 

• The following OCL condition on p may afterwards be invalid: this demands a sophisticated monitoring approach

• The efficient approach: Monitor uses a non-deterministic automaton to track the state, how far the sequence 
diagram has already progressed 

Monitoring a Sequence Diagram

«match:free»
a:Auction

«match:free»
p:Person

«match:initial»
t:AuctionTest

sendMessage(m)

m instanceof BidMessage &&
p.company == “KPLV”

SD 

«trigger»
handleBid(bid)

Note: 
all persons of the auction receive 
messages and are therefore
candidates for the object p
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Deriving the Automaton for the Recognition Procedure

2

t: a.handleBid

1:

2:
3:

4:
5:

intermediate  states
1 = initial state,
5 = final state

a: p.sendMessage

3

all except
*: t.return

allall except
*: t.return

5

a: t.return

1 4

(OCL constraint 
fullfilled?)

legend:  sender: receiver.method
sender: receiver.return
* allows any object

recognizing
automaton

«match:free»
a:Auction

«match:free»
p:Person

«match:initial»
t:AuctionTest

sendMessage(m)

m instanceof BidMessage &&
p.company == “KPLV”

SD 

«trigger»
handleBid(bid)

all except
t: *.handleBid und

*: t.return

methods that 
are ignored  

Animated in 
several steps
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Sequence Diagram as Simulation Result

• Logs (protocols) can be represented as sequence 
diagrams
 Both: derived from real systems and from simulations 

 Appropriate filters like «match:*»
 on certain objects,
 kinds of communication (resp. material flows), and
 time frames 
reduce the length of the logs.

 Appropriate visualizations and further aggregations 
are needed.

• SDs from logs are not necessarily causal, because 
they only describe observations

bid.time:
Time

finish:
Time

getTimeSec()

return 14:54:03

return 15:00:00

getTimeSec()

timepol:
TimingPolicy

SD 

getTimeSec()
return 15:00:01

return 15:00:00
getTimeSec()

getTimeSec()
return 14:55:34

return 15:00:00
getTimeSec()
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Applications for Statecharts

1: Constructive use of Statecharts for code generation
 typical: executable actions, rather detailed
 (already discussed in Statechart chapter)

2: Statecharts for tests
 typical: logic formulae as state invariants and transition 

postconditions
  logics can be understood as state based method 

specifications

3: Statecharts as behavioral descriptions
 typical: few details, underspecified in various ways, 

abstracts from the real internal state
  can be used 
 to check correct state transitions in test cases
 or as a template for deriving test cases
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Statechart to check a Control Flow

Statechart
RunAuctionAuctionReady

[timePol.status == 
TimingPolicy.READY_TO_GO] AuctionRegularOpen

[!timePol.isInExtension]

AuctionFinished

[timePol.status == 
TimingPolicy.FINISHED]

AuctionExtended

[timePol.isInExtension]

AuctionOpen

[timePol.status == TimingPolicy.RUNNING]

start()

finish()

startExtension()

bid(...)

bid(...)

driver: auction.start();  auction.startExtension();  auction.finish();
statechart: auction    RunAuction from   AuctionReady to   { AuctionFinished }

observed
object

initial
state

list of possible
final states

auction object is defined
in an object diagram
(not shown here)

name of the
statechart

Test
…



26.12.2023

106

Software Engineering  |  RWTH Aachen631

Test Coverage for a Statechart

• Coverage: How well does a set of tests cover 
possible behaviors?

• State coverage: 
 each state is traversed by a test

• Transition coverage:
 each transition is traversed by a test

• Path coverage:
 each path is traversed by a test 
 (but impossible when a loop is included)

• Minimal loop coverage: 
 acyclic paths +  traverse through each loop once

• Further coverage criteria distinguish alternatives in 
conditions, invariants, ...

• Coverage can systematically be measured using a 
monitor.
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Deriving Tests from a Statechart

• Coverage can systematically be measured using a 
monitor.

• But it is also possible to systematically derive tests 
from a Statechart to reach the coverage:

• For each path:
 calculate the test data that executes the path
 i.e. an object structure including attribute values

• Strategies are:
 Backward analysis: calculate attribute values from the 

desired result by stepping back along the transitions

 Use symbolic execution (i.e. values remain abstract) 
along the symbolic computation

  related to verification 
(i.e. the symbolic manipulation in these tools)
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• State coverage requires only one test case
Input:   start; startExtension; finish

• Transition coverage and minimal path coverage 
coincide in this example:

• Two paths are sufficient, but are also necessary, 
because finish can be exited from both sub states.
Input: start; bid; startExtension; bid; finish
Input: start; finish

• Path coverage is not possible, because of two bid-
loops, i.e. infinitely many paths of forms
 start; bid;* startExtension; bid;* finish and 
 start; bid;* finish
and their prefixes.

Example: Test Cases for the Auction Statechart

start

finish

start

finish

start

finish

startEx.

bid

bid

startEx.

bid

bid

startEx.

bid

bid
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• Requirements: (1) If a bid is submitted just before the end of the auction, the auction will be extended by up to 
extensionTime seconds. (2) auctions always end up between firstClosing and latestClosing

• Three Policies:
 NONE: there is no extension
 CONSTANT: the extension is always the same delta.
 LINEAR: linear decrease of extension, but at least MIN_DELTA. 

• The graph illustrates the granted extension delta:

Sample Task: Policies for Extending an Auction

Appendix

calculated 
extension
(delta)

auction beginning
(startTime)

final end of the extension 
phase (latestClosing)
(e.g. after 2,5h)

regular end of auction 
(firstClosing)
(e.g. after 2h)

extensionTime
(e.g. 30 sec.)

delta (LINEAR)

delta (NONE)
MIN_DELTA
(typically 5 sec.)

delta (CONSTANT)
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Exercise, Part 1:

1) Implement method newCurrentClosingTime that 
calculates the new closingTime in the structure
given in the CD

2) Design a Statechart for the method representing the 
cases and variants over the control flow.

3) Identify a set of paths that achieves state, transition 
respectively path coverage.

4) Develop a set of test data for each path.

5) Test your implementation with each record. 

Appendix

Auction ...

int  time

Bid ...

final int DELTA_MIN

TimingPolicy ...

int newCurrentClosingTime
(Auction a, Bid bid)

// enum values: 
LINEAR, 
CONSTANT, 
NONE

CD

int currentClosingTime
int firstClosing
int latestClosing
ExtensionType exType
int extensionTime
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A Solution Approach/Oracle for newCurrentClosingTime

Appendix
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Exercise, Part 2:

5) For this Statechart, identify a set of paths that 
achieves state, transition and path coverage.

6) Develop test data for each path

7) Derive/Generate an oracle from the Statechart

8) Test your implementation with each of the records 
and compare the actual result with the result of the 
oracle.

Appendix
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• State coverage is possible with three paths:

• Transition coverage has not yet been reached by this.
However, four paths are sufficient:

Solution for Coverage - 1

Appendix
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• Path coverage (identical to the minimal loop coverage, since no loop is present, 18 paths):

Solution for Overlapping - 2

Appendix

because of invariants in the algorithm, these paths cannot be taken by 
any chance and thus also cannot be tested
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• Key issues in simulation:
 relevant selection of key characteristics and behaviors 

used to build the model, 
 the use of simplifying approximations and assumptions 

within the model, and 
 fidelity and validity of the simulation outcomes.

Definition Simulation

A simulation is the imitation of the operation of a real-
world process or system over time.

• Simulations require the use of models. 

• Simulation is used in many contexts, such as 
 simulation of technology for performance tuning or
 optimizing, safety engineering, 
 testing, 
 training, education, and video games 
 scientific modelling of natural systems or human systems 

to gain insight
 to show the eventual real effects of alternative courses of 

action

(partly adapted from Wikipedia)

Human-in-the-loop
simulation of 
outer space
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Simulation For Testing Model and System Quality

• Simulations require the use of models.

• Key questions that can be answered when simulating 
in engineering:

 1) Will the final system fulfill its requirements?
- Given: requirements and models

 2) How will the system behave in specific situations?
- Given: models and situation description of interest

__:

__:

__:__:

__:

__:

Geometry, materials, 
function and software models
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Simulation For Testing Model and System Quality

• 3) What is the quality of the designed models
vs. fidelity and validity of the simulation outcomes?

• This question 3) has many facets, but this is 
especially relevant when automatic derivation of the 
system from the model exists, e.g.
 in software with code generation 
 for systems with 3D printing

• i.e. when simulation and product partly coincide?

• 4) What is the quality of the designed models
vs. correctness, reliability, security, safety, etc. 
of the generated outcomes?

target-adaptive 
code generator

software components
APIs, handlers

__:
__:

__:

software 
models

__:
__:

__:__:
__:

__:

physical components:
Geometry, materials 
and  function models

3D-printing,
production, …

__:
__:

__:__:
__:

__:
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Model-Based Systems Engineering at Airbus

MBSysEng
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• … on the example of participating in the

• Design, implementation and quality assurance for
 situation detection
 situation classification
 behavior generation

• For autonomous driving in sub-urban scenarios
• Team:

 and Software Engineering

Development of Autonomous Mobile Systems
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“Pass Californian driver’s license test”:
• Drive safely!
• 4 way stops, yield way, …
• Autonomous mission: 
 60 miles in urban area

Conditions of the DARPA Urban Challenge

(4 Way Stop, Track C)

(Overview Testing Grounds)
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(Track A)

Model of car 
behavior Model of street 

and obstacles

One of the Scenarios in the Semi Finals
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Languages: DSLs for scenarios (CD+ layout+ Statecharts+ sequence diagram)
DSL for geographic & time-dependent traffic rules

Test: Correct 
traffic lane?

Test: Correct 
route chosen?

Test: 
Sufficient distance?

Test: Timing 
ok?

Assurance of Software Quality: Virtual Runs in the Simulator



26.12.2023

109

Software Engineering  |  RWTH Aachen649

Agile SysML-based Systems Development: Models for Code and Simulation

test / simulation
code generator

test / simulation
infrastructure

target-adaptive 
code generator

software components
APIs, handlers

__:
__:

__:

osek access
package

__:
__:

__:

software 
models

__:
__:

__:

test
infrastructure
package

__:
__:

__:

simulation
models

__:
__:

__:__:
__:

__:

physical components:
Geometry, materials 
and  function models

3D-printing,
production, …
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Trafo
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• Objective:
 minimizing risk
 increase developer effectiveness

• by:
 small steps through systematic, manageable 

transformations 
 use of architecture and design given by models

• Prerequisite for quality-assured model-based 
evolution:
 code generators
 automated tests 
 library of model transformations

• Software must be adapted frequently:
 new requirements
 changed technology
 new connections to neighbor systems
 troubleshooting

• Techniques for the evolution of legacy systems, such 
as
 reverse engineering: extraction of the original design 

models from the source code (object code)
 wrapping: wrapping code of an older technology (Cobol, 

mainframe) into a modern access layer (Java, Web)

• Evolution traditionally consisted of one or a few large 
steps (transformations) with a high chance of failure

Evolution

Test = driver and “observation”
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• Software must be enhanced frequently:
 new requirements
 changed technology
 new connections to neighbor systems
 troubleshooting

• And therefore modern development processes 
embrace evolution
 minimizing risk
 increase developer effectiveness

• through
 small iterations
 automated tests 
 refactoring techniques:

transforming development artefacts (models, code)

Evolution is an Intrinsic Concept in Agile Development Processes
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• The goal of model evolution is the systematic transformation of a model to
 improve the structure / architecture of a system while
 maintaining the observed behavior

Example for a typical “refactoring”: subclass methods are generalized and moved into the superclass

Evolution of Models

Person

GuestBidder

checkPasswd()

CD

Bidder

Person

Guest

transformation

CD

checkPasswd()

checkPasswd()

MBSE
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Test = Treiber und “Beobachtung”

Trafo
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• Evolutionary transformations:

 adding get/set methods
 moving an attribute to another class
 merging of two classes 

 minimization of statecharts

 deletion of unused components in an architecture

• A model transformation is a purposeful, executable 
mapping of a given model into different one.

 Mapping is executable by a development tool

• Examples of transformations 
(that are not evolutionary, but helpful):

 transformation of class diagram to Java 
 transformation of class diagram to SQL statements 
 extraction of analysis data

Model Transformation

M2M1

Transformation
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• Transformations within a language can be used for:

 refinement / abstraction 
 normalization
 evolution
 information extraction
 …

• A model transformation is a purposeful, executable 
mapping of a given model into different one.

• Properties of model transformations:

 bijective (injective, surjective?)
 bi-directionality?
 abstracting (forgetting)?
 adding details?
 semantics preserving / refining?
 within or between languages?

Model Transformation

M2M1

Transformation
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• Refactoring is a special case of transformations:
 Fowler'99 uses refactoring on the code-level (Java) 
 refactoring was originally introduced in ’92/93 by 

Opdyke /Johnson for C++

• Definition of refactoring [Fowler ’99]:

 Refactoring is the process of changing a software system 
in such a way that it does not alter the external behavior 
of the code while improving its internal structure.

• Conclusion:
 refactoring of models can be used for the evolution of 

systems.

Refactoring 
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• Strict distinction of activities: 
 refactoring vs. 
 extension of functionality 

• Refactoring primarily helps to improve architecture

• But: tight integration of refactoring and development 
by the principle
 “model a little, refactor a little” (according to XP)

Methodology of Refactoring

goal: 
Reach a relatively 
good design and 
100% of the 
functionality

quality of design 

amount of
modeled 
functionality

project progress 

100%

“optimal”

further development: adds new features, 
but usually reduces the quality of design

refactoring: improves design while 
preserving the functionality starting point for development
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• Tests observe the structure and behavior of a system execution:

Tests are Observations for Evolutionary Transformations

Test = driver and “observation”

construction 
& call

compares with
expected
result

timeline

“snapshots”
of the 

system run

observe
creation

checks
property

observe
interaction

s0   initial 
snapshot

sn final 
snapshot

s1 s3s2
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• The observation remains intact under the transformation.

Validation of Transformations

Test = driver and “observation”

transformation

observation  

current system running the modified system

• But in practice: often structural parts are changed under the transformation

• Therefore: acceptance tests base on appropriate abstractions and fixed interfaces
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• Class diagrams
 architecture / design improvement: very worthwhile

• Architecture diagrams (IBDs)
 architecture / design improvement: very worthwhile

• Code
 cf. refactoring literature

• Object diagrams
 necessary in the context of CD-transformations, 

but: rather unexplored

• OCL
 logic has elaborated calculus, computation rules for containers, ... 

• Statecharts
 transformation rules for the simplification of statecharts

• Sequence diagrams
 transformation techniques have not yet been developed

Refactoring of UML / SysML Notations 

discuss

statecharts

class 
diagrams

sequence 
diagrams

object 
diagrams

__:

__:

__:

C++, Java …

OCL

architecture 
diagrams
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• Class diagrams
 architecture / design improvement: very worthwhile

• Architecture diagrams (IBDs)
 architecture / design improvement: very worthwhile

• Code
 cf. refactoring literature

• Object diagrams
 necessary in the context of CD-transformations, 

but: rather unexplored

• OCL
 logic has elaborated calculus, computation rules for containers, ... 

• Statecharts
 transformation rules for the simplification of statecharts

• Sequence diagrams
 transformation techniques have not yet been developed

Refactoring of UML / SysML Notations 

statecharts

class 
diagrams

sequence 
diagrams

object 
diagrams

__:

__:

__:

C++, Java …

OCL

architecture 
diagrams
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• For both Java and OCL, the entire algebra is available, which is formulated as equations: 
 a-a == 0, a+b == b+a, x && true == x

• Data type-specific transformations, for example in OCL:
 List{a,b,c}.first == a

• Procedural code often has applicability conditions of the form:  
term is defined | deterministic | side-effect free.

Example of a Transformation of Code 

transformation source 
(here an expression with  
schema variable a)

result

a + a

2 * a

expression a is free of side effects 
and deterministic 

applicability conditions

Transformation
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• many transformations only apply under conditions, i.e. the applicability conditions:

• Example: replacement of “equal”

• Example: replacing a method call

Applicability Conditions


1. expressions a and b are free of side effects
2. a == b

a

b



when expression x has type A, y has type B:
1. inv:

forall A a, B b:
bar(a,b,0) == foo(a,b)

... foo(x,y) ...

... bar(x,y,0) ...

Transformation

Transformation
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• Expansion of a method body:
 analogy to the compiler principle of method “inlining”

• When allowing redefinition of getX() in subclasses applicability conditions become more general, but also more 
complex 
 e.g., redefinition of getX() only within limits

• Q: What about checking the applicability conditions?

Applicability Conditions



when a is of type A
1. class A { ...

getX() {
return 2 * getY();

}}
2. getX() is not redefined in any subclass 

... a.getX()

... 2 * a.getY()

Transformation

Software Engineering  |  RWTH Aachen666

Correctness of Applicability Conditions 

• Treatment of applicability conditions:

 automatic check based on the syntax: 
 examples: strong typing system, 

correct initialization of variables, ...

 semi-automatic check:
 examples: model checking for system properties

 interactive verification:
 examples: correctness proofs in first-order logic e.g. 

based on a verification tool like MontiBelle

 test:
 example: verification of invariants at runtime

 manual reviews:
 reviewer gives his/her “OK” on being “confident”



when expression x has type A, 
y has type B:
1. inv:

forall A a, B b:
bar(a,b,0) == foo(a,b)

... foo(x,y) ...

... bar(x,y,0) ...

Transformation

Transformation


a + a

2 * a

expression a is free of side effects 
and deterministic 
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• Excerpt from the List of Refactorings (Fowler’99)
 Add Parameter
 Collapse Hierarchy
 Encapsulate Collection
 Extract Interface
 Extract Method

 Move Field (=Attribute)
 Move Method
 Pull Up Field
 Remove Middle Man
 Remove Parameter
 Rename Method

 Replace Array with Object
 Replace Conditional with Polymorphism
 Replace Delegation with Inheritance
 Replace Inheritance with Delegation 
 Replace Error Code with Exception

• Opdyke’93: 26 basic rules for C++:
 often deleting and creating new program elements

• Fowler’99:   72 rules for Java:
 many of them  explained using class diagrams
 68 small refactoring, manipulating some of Java elements
 4 “big refactorings” 

Sources of Refactoring Rules
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• Removing a class in the class hierarchy 

• The rule can be applied in both directions 

• When removing: inherited code is moved into subclasses 
 special case to handle: subclasses override method and call “super()”
 special case to handle: constructors

Refactoring “Collapse Hierarchy”

University Staff

Professor Assistant Secretary

University Staff

Professor Assistant

SecretaryScientific Staff


Software Engineering  |  RWTH Aachen670

• Attribute “att” shall be moved from class A to B

Example: Moving an Attribute

// Code
a.att

A

att

…
B

… CD
…

a.exp is the navigation path from A to B 

Code

// Code
a.exp.att

CD 
…A

…
B

att

… Code




A
…

B

att

…/connection

11

{frozen} CD 
… context A a inv:

a.connection == a.exp;

OCL

this can, for example, be validated by tests
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Refactoring: Introduction of a Test Pattern for Static Methods

• Problem to be addressed:
 class has a static method 
 method has side effects 
 structure is there not suitable for testing, 

because method should be mockable in tests

• Solution: by transformation of the structure in three 
refactoring steps 
 1) Replace Static Method with Singleton
 2) Mock the Singleton through Subclass
 3) Migrate Static Method for Encapsulation of the Singleton

• Applicability:
 Static methods in general, e.g. protocols, logs, DB access
 Constructors (see also factory / builder pattern)

CD
…

Class

+method(Arguments)
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• Method delegates its task 
to a singleton object 

• SingletonDummy
overrides the method in 
question thus allowing to 
mock the behavior in tests

Replace Static Method with Singleton

CD
…



CD
…

OldOwner

+method(Arguments)

OldOwner

+method(Arguments)

Singleton

+Singleton getSingleton()
#doMethod(Arguments)

#Singleton singleton = null

SingletonDummy

#doMethod(Arguments)

class OldOwner {
static method(...) {

Singleton.getSingleton()
.doMethod(...);

}
}

delegation

Java1
2
3
4
5
6
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- Singleton getSingleton()
+ method(Arguments)

• Encapsulation of the calling 
mechanism in the singleton

• … to prevent the users to 
have to cope with the object 
at all:
 Users still have static 

method available

... and Migrate Static Method for Encapsulation of the Singleton

CD
…



CD
…

OldOwner

+method(Arguments)

OldOwner Singleton

Singleton

+Singleton getSingleton()

…

…
Migration

class Singleton {
static method(...) {

getSingleton().doMethod(...);
} }

Java1
2
3
4
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Refactoring: Decoupling Application – Framework 

• Problem to be addressed:

 the application uses a framework 
 framework has side effects / DB, GUI, Web, ... 
 use of the framework objects is inappropriate for testing, 

because of the side effects

• Solution:
 decoupling by using an adapter as mediator

• Applicability:
 Any kind of normal framework (non reflective)

CD
…«Application»

Aclass
«Framework»

Fclass

method(Arguments)

1
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Decoupling with Adapter

CD
…



CD
…

«Application»
Aclass

«Framework»
Fclass

method(Arguments)

«Application»
Aclass

«Adapter»
AdapterClass

method(Arguments)

«Framework»
Fclass

method(Arguments)

«Dummy»
AdapterDummy

method(Arguments)

introduction of 
the adapter as 
“man in the middle"

0..11

1

class AdapterClass {
method(...)
fclass.method(...)

}}

Java1
2
3
4
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Large Refactorings

• … are complex transformations that require planning
 ideally, cut into small systematic steps

• Examples

 separate domain from representation (Fowler)

 convert procedural design to OO (Fowler)

 decoupling of a complete application from a framework 
(GUI, Middleware, ...)

 complex changes of structure 
(below)

CD


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Example: Changing a Data Structure 

Action steps:

1. identify old data structure
here: ‘long’ replaced by ‘Money’

long      valueInDM

SellItem …

2. Add new data structure (DS) + queries
+ compile & test

Money  value
long      valueInDM

SellItem …

context SellItem inv IV:  
valueInDM ==

value.asDM()

3. define invariants to relate both DS:
6. Simplify + compile & test

7. Remove old data structure
+ compile & test

Money  value

SellItem …

5. Adjust code using the old DS to use new DS now
+  compile & test

= ... valueInDM ...


= ... value.asDM() ...

valueInDM = ...
value.set(...)
assert IV

4. Add code for changing new DS wherever 
the old DS is changed + compile & test

based on
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• Extreme Programming provides the methodological 
foundation

• Eclipse, JUnit etc. provide techniques that assist 
refactoring
 test case definition, execution, management
 measuring "code smells" (metrics)
 support for simple and increasingly many big refactorings
 generation of dummies and mock objects for testing
 status: still much to do!

• MDA provides methodology for model-based 
software development
 code generators
 transformation languages
 status: MBSE tools are still improvable.

State of the Art in Refactoring

XP
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Physical 
System

Energy

Material

Data

CPF
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System Specification through Functions

• A system defines a function
 This includes mechanics and digital parts
 A function describes the task of a product in a solution-neutral 

manner

• Advantages:
 A) Mathematically very precise foundation
 B) Function composition
 C) Powerful modelling concepts

• In Mechanical Engineering there exist several design 
catalogues that list elementary functions and map 
them to physical effects

• Catalogue of mechanical functions and physical effects 
considered in this lecture:

system boundary

flows: input

Cyber-
Physical 
System

Energy

Material

Data

flows: output

CPF

(from Jacobs/Konrad 2020)

[KK98] Koller, R., Kastrup, N. Prinziplösungen zur
Konstruktion technischer Produkte. Springer, 1998
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• Example from [KK98]: 

• Modelled as Cyber Physical Function:

• Modelled as geometric object with two pointwise 
interfaces: 

Elementary Function

• Function is a mathematical construct relating input 
and output (including history) 
 consequence: use of streams to model channels 
 functions can be composed

An elementary function is atomic in that sense that it 
is not further decomposed.

• [KK98] have shown that in Mechanics a catalogue of 
elementary functions can be defined

• The informal descriptions there usually contain
 a picture or a verb + noun describing the I/O-relation
 channel types identified through the arrow-kind and the 

variable name
 often corresponds to a mathematical equation

𝐹௜௡ 𝐹௢௨௧

„increase/decrease force“

Force a Force b

CPF

Converter(n)

b.abs = n * a.abs

Force a Force b
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Catalogue of Elementary Functions

• [KK98] have also shown that a catalogue of 
elementary functions is useful in Mechanics 

• Roughly 350 elementary functions, such as:
 transform electrical to mechanical energy
 apply mechanical energy on fluid 
 connect two solid materials
 conduct force / light / current / …
 … (many examples will be discussed in the following)

• An elementary function describes the functional 
interface, but not the physical (geometrical) 
realization: 
 for their solution we use physical effects discussed later

Elementary Functions in  [1]

𝑈, 𝐼 𝐹, 𝑣

Example: „transform electrical to mechanical energy“

TransElToMech(n)

b.force * b.velocity = n * a.voltage*a.current

Electrical
Energy a

Mechanical
Energy b
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Catalogue of Elementary Functions in Software?

• [KK98] has ~350 elementary functions, which are 
successfully in use 

• Software Engineering does not have a catalog of 
elementary functions, but also “building blocks”:

 Math functions (+, *, pow)
 Container operations (list, set, map operators)

 OO methods? (but we define fresh ones all the time …)
 Classes in a library? 

 Design patterns, such as factory, adapter, state pattern, 
… roughly 150, number increasing

• Software developers constantly create new 
elementary functions in OO methods and classes, 
which they compose to large systems.

Elementary Functions in  [1]

For software?
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Signature of Input and Output of a Function

• The signature of a function describes the forms of 
interactions of a system component with its 
environment.

• Interactions are broken down to streams of elements, 
which describe the flow and can be of the kinds 
 data, 
 energy or 
 material

• Interactions are organized through input and output 
channels.

• The Interface of a Cyber-Physical System is defined 
through its function signature

Cyber-
Physical 
System

Energy

Material

Data

Rep.
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Stereotypes for CPF and their Interaction Channels 

• We in this course define the following:

• for functions
 «component» machinery, …

 «system» machinery that is “complete”
 «software» software (only), …
 «being» humans, …

• for communication/flow channels:
 «material» elements, compounds, alloys, …

 «fluid» continuously flowing material,
typically not countable 
(water, gas, sand)

 «item» discrete physical items, e.g. cars
 «energy» types of energy

 «data» for data objects, basic data (e.g. int)
 «event» for discrete data that triggers 

behavior
 «signal» for continuously flowing data

• Principle picture:

• is refined to: 

Cyber-
Physical 
System

Energy

Material

Data

«component»
Cyber-

Physical
System

CPF

«energy»

«fluid»

«signal»

«item»

«energy»

«fluid»

«signal»

«item»

«data» «data»

Rep.

… and omit them when unambiguous.
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Modelling Types of Channels

• The input/output channels of a function are described 
with special datatypes that we model as special forms 
of classes

• We apply the interpretation of CDs for systems 
engineering
 E.g., energy types model continuous flows  traditional 

interpretation is not suited
 there is no classic “instance” and “identity” concept, only 

“values”, but continuously many …

• Dependent on relevant properties e.g. Force may be 
modelled with or without direction, …

• A catalogue of common channel types, e.g. 
dependent on SI-Units, however, helps.

«physics»

Force
N abs
ℝଷ dir
ℝଷ pointOfOrigin

«physics»

Speed
m/s abs
ℝଷ dir
ℝଷ pointOfOrigin

«energy»

MechanicalEnergy
N force
m/s velocity

«energy»

ElectricalEnergy
A current
V voltage

CD4Phys

Converter
MechanicalEnergy MechanicalEnergy

CPF

Classes to model flows of mechanical 
energy and electrical energy
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Categories for the Catalog of Elementary Functions

• [KK98] categorizes elementary functions by the stereotypes of the function’s channels and the kind of transformation 
performed by the function 

Processing Energy
(Inputs & Outputs are «energy»)

Transform Energy

Increase/Decrease

Change Direction

Conduct

Isolate

Collect

Split

Blend

Separate

Processing Material
(Inputs & Outputs are «fluid» xor «item»)

Affix/Remove Materialistic
Properties

Increase/Decrease Values of
Materialistic Properties 

Conduct/Isolate Material

Mate/Unclamp Materials

Blend/Split Materials

Compound/Separate

Combining Material and Energy
(Mixed Input/Output forms: «fluid», «item» 

and «energy»)

Apply Energy to Materials

Separate Energy from Material
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Translational glossary for [KK98] (English - German)

Elementary Function Elementarfunktion

Design Catalogue Konstruktionskatalog

Elementary Function Elementarfunktion

Category of Elementary Functions Elementaroperation

Transform Wandeln

Collect Sammeln

Split Teilen

Blend Mischen

Separate Trennen

Affix Hinzufügen

Mate Fügen

Unclamp Lösen

Principle Solution Prinziplösung

(Physical) Effect (Physikalischer) Effekt

Engineering Material Werkstoff

Active Surface Wirkfläche

MBSE
17. Functions Modelling Mechanics
17.2. Elementary Functions: Energy

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen 

http://www.se-rwth.de/

Farbe!

Cyber-
Physical 
System

Energy

Material

Data

CPF

Software Engineering  |  RWTH Aachen690

Energy Processing Functions

• Elementary functions in this category 
 have an interface with purely «energy»-channels
 Perform one of the operations shown on the right

• These functions always obey energy conservation 
 Use this for specifying the behavior of these functions!

• Examples are: 
 Transforming electrical energy to mechanical energy using 

electromagnetic induction as effect (e.g., electric motor)
 Increasing/decreasing moments of force using adhesion as effect 

(e.g. lever, gear box, wheel)
 Split force/torque using the leverage effect (e.g., differentials)

Processing Energy
(Inputs & Outputs are «energy»)

Transform Energy

Increase/Decrease

Change Direction

Conduct

Isolate

Collect

Split

Blend

Separate
electric motor

(Electromagnetic Induction) differential
(Leverage effect)

gear box
(Adhesion Effect)
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• Since it is unusual to work with energies directly in mechanical equations, [KK98] also allows the following 
types as inputs for Energy
 Accelerations
 Geometry descriptions in an energy equation (e.g. area, diameter, distance)
 magnetic flux density; field strength
 electric flux density; field strength
 Force, moment
 frequency
 Current
 Alternating current
 Light intensity
 Sound pressure
 Charge
 Warmth Q; Temperature T
 Voltage
 AC voltage
 Velocities
 Wave length
 Density

Special Types in Energy Processing Functions
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Elementary Function: Changing Force Direction

• We model Force as direction vector and point of origin
• A CPF may change this direction
 Parameters: A ∈ ℝଷ×ଷ

 Interface: 
 Input and ouput energy described by:  Force x   and  Force y

• In general changing direction is modelled as linear 
transformation using matrix A
 y. dir = A ∗ x. dir

• Example: rotation around an angle 𝛼 in the x-y plane realizes 
ChangeDirection with specialization:

 𝐴 =
cos (𝛼) −sin (𝛼) 0

sin (𝛼) cos (𝛼) 0
0 0 1

CD4Phys

CPF

ChangeForce
Direction(A)

Force y Force x

RotateForce
InXYPlane(α)

Force y Force x

category of this elementary 
function: Change direction

«physics»

Force
N absAmount
ℝଷ dir
ℝଷ pointOfOrigin

1

2

3

4

5

6

7

8

11

12

13

14

15

16

17

10

9
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• Conducting force changes the point of origin of an 
incoming force

• Mathematically this corresponds to a translation: 
 Point of origin of the force vector is changed
 Underspecify whether direction is changed

• We specify Conduct Force as follows: 
 Parameters: offset v ∈ ℝଷ

 Interface:  In/out as before

 Behavior: 
 x. pointOfOrigin = t +  y. pointOfOrigin 
 for given 𝐴 ∈ ℝଷ×ଷ:   x. dir = A ∗ y. dir

 We model it underspecified, whether the function also 
changes the direction of the force

• E.g. in a car, drive axles perform this function: 

Elementary Function: Conduct Force

CD4Phys CPF

ConductForce(v)
Force y Force x

Force a Force b

possible realization: drive axle

«physics»

Force
N absAmount
ℝଷ dir
ℝଷ pointOfOrigin

1

2

3

4

5

6

7

8

11

12

13

14

15

16

17

10

9
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Elementary Function: Energy Transformation 

• Energy transformation is a conversion

• Function interface: 
 Input Energy and type 
 Output Energy and type

 Behavior: 
 law of energy conservation

• Tackling loss, because there is always a loss:

• A) Ignore the loss, deriving a wrong, but still 
useful model

(Lossfree model!)

CPF

TransMechToEl
b. force ∗ b. velocity = a. voltage ∗ a. current

ElectricalEnergy bMechanicalEnergy a

(Lossfree model!)

CD4Phys«energy»

MechanicalEnergy
N force
m/s velocity

«energy»

ElectricalEnergy
A current
V voltage

TransElToMech

b. force ∗ b. velocity =  a. voltage ∗ a. current

ElectricalEnergy a MechanicalEnergy b
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Energy Transformation with Loss   (Deterministic Version)

• Tackling loss, because there is always a loss:

• B) Add loss as parameter 
(here: efficiency factor n): 
 Describing efficiency of the transformation

 Observe: n is a parameter and thus fixed 
during operation

 Thus, the equation is deterministic
 and loss is fix over time.

• The model still is not completely correct 
(which n, n fixed?), but potentially closer to reality

• Open question: Where to connect channel loss?
 E.g. as heat or out of the system ?

V1: Old lossfree model!

V2: Usually 0.7 ≤ n ≤ 0.99

TransElToMech(n)

𝐄𝐧𝐞𝐫𝐠𝐲 𝐥𝐨𝐬𝐬

MechanicalEnergy b

a. energy = b. energy + loss

b. energy = n ∗ a. energy

Electrical-
Energy a

TransElToMech

            a. energy = b. energy

MechanicalEnergy b

Electrical-
Energy a

CD4Phys«energy»

MechanicalEnergy
N force
m/s velocity
/ J energy

«energy»

ElectricalEnergy
A current
V voltage
/ J energy

Derived attribute:
energy = 

force * velocity
Derived attribute:
energy = 

current * voltage
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Energy Transformation with Loss   (Underspecified, Correct Version)

• Tackling loss, because there is always a loss:

• C) Define loss as range 
(defined by parameters) 

 A range of efficiency values nmin and nmax

• The model is now underspecified:

 A range of behaviors may occur

 and thus many implementations are possible

 deviations due to (uncaptured) system context 
influences can be taken into account

 degeneration (over time) can be taken into 
account

V2: Previous deterministic model

TransElToMech(n)

𝐄𝐧𝐞𝐫𝐠𝐲 𝐥𝐨𝐬𝐬

MechanicalEnergy b

a. energy = b. energy + loss

b. energy = n ∗ a. energy

Electrical-
Energy a

CD4Phys«energy»

MechanicalEnergy
N force
m/s velocity
/ J energy

«energy»

ElectricalEnergy
A current
V voltage
/ J energy

TransElToMech(nmin, nmax)

𝐄𝐧𝐞𝐫𝐠𝐲 𝐥𝐨𝐬𝐬

MechanicalEnergy b

a. energy =  b. energy + loss

b. energy  ≤  nmax ∗ a. energy

Electrical-
Energy a

V3: Correct, but underspecified model

b. energy  ≥  nmin ∗ a. energy
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Energy Transformation with Loss   (Correct, Incomplete Version)

• Still tackling loss:

• Underspecification also allows to omit channels:
 e.g. channel loss is omitted 

• This is a valid model

• But:
 law of energy conservation cannot be stated anymore
 (ok, let’s live with it)

• This allows various interpretations:
 more channels are possible, but hidden

(loss via wind, sound, heat)

 or the lost energy is actually stored internally 
(e.g. as heat)

V4: Correct, but omitted output channel

CD4Phys«physics»

Power
W value

«energy»

MechanicalEnergy
N force
m/s velocity

«energy»

ElectricalEnergy
A current
V voltage

1

1

TransElToMech(nmin, nmax)

𝐄𝐧𝐞𝐫𝐠𝐲 𝐥𝐨𝐬𝐬

MechanicalEnergy b

a. energy =  b. energy + loss

b. energy  ≤  nmax ∗ a. energy

Electrical-
Energy a

V3: Correct, but underspecified model

b. energy  ≥  nmin ∗ a. energy

2

2

TransElToMech(nmin, nmax) MechanicalEnergy b

a. energy =  b. energy + loss

b. energy  ≤  nmax ∗ a. energy

Electrical-
Energy a

b. energy  ≥  nmin ∗ a. energy
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Energy Transformation: Examples 

• Other examples for energy transformation: 
• (We use the simplified deterministic variants)

• An electrical heater transforms electrical energy to heat 
 Parameter: n (tells the efficiency)
 Interface: 
 Incoming ElectricalEnergy a
 Outgoing Heat b

• A light bulb transforms electrical energy to light: 
 Parameter: n (tells the efficiency)
 Interface: 
 Incoming  ElectricalEnergy a
 Outgoing Light b

• Upcoming: There is an interesting dualism of light as 
energy carrier and light as a carrier of information!

«energy»

HeatEnergy
W heatflow

CD4Phys

CPF

«energy»

ElectricalEnergy
A current
V voltage

[Wei09] Weißberger, W. (2009). Elektrotechnik für Ingenieure. Vieweg + Teubner.

TransElToLight(n)

a. voltage ∗ a. current =  n ∗ b. flux

Light bElectricalEnergy a

Heat-
Energy bTransElToHeat(n)

b. heatflow =  n ∗ a. voltage ∗ a. current

ElectricalEnergy a

Usually n ≈ 1[Wei09]

Usually 0.01 ≤ n ≤ 0.25[Wei09]

«energy»

Light
W flux
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Electromagnetic Waves as a Carrier of Energy: Solar Generator

• Electromagnetic waves, such as light, carry energy

• In case of the sunlight this is due to nuclear fusion 
within the sun that releases energy

• Radiant flux (W) is the amount of energy emitted per 
unit of time 
 The radiant flux that is to be transformed depends on the 

geometry of the light-sender (e.g., the sun) and the 
surface it hits

 Interface: Two contacts, one Data port
 in: Light a
 out: ElectricalEnergy b

 Behavior: 
 b. voltage ∗ b. current = n ∗ a. flux

CPF

«energy»

Light
W flux

CD4Phys

TransLightToEl(n, A)

b. voltage ∗ b. current =  n ∗ a. flux

Light a

Electrical-
Energy b

«energy»

ElectricalEnergy
A current
V voltage

MBSE
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CPF
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Material Processing Functions

• Elementary functions in this category 
 have an interface with purely «material»-channels 

(i.e. «fluid» or «item»)
 Perform one of the operations shown on the right

• If the interface signature contains only «item»-channels the 
function exhibits discrete behavior 
 Very similar to the behavior of software functions! 

• Examples are: 
 Mating physical parts made of metal (e.g. screw connection)
 Conducting water (e.g. pipe), conducting screws (e.g., conveyor belt)
 Blend water and oil (e.g. emulsion)
 Separate plasma from blood (e.g. centrifuge)

Processing Material
(Inputs & Outputs are «fluid» xor «item»)

Affix/Remove Materialistic
Properties

Increase/Decrease Values of
Materialistic Properties 

Conduct/Isolate Material

Mate/Unclamp Materials

Blend/Split Materials

Compound/Separate

centrifuge

conveyor belt

screw connection
pipes
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Combination of the Car Body and the Engine

• Interface: 
 Two incoming material items are combined to form one 

outgoing material item

• Behavior: 
 The powertrain needs to arrive first
 Once also the CarBody is there
 The function builds the car from the two input items

• This is perfect for an object-oriented description
 operating on material items
 creating a new “object” of class Car
 and attaching powertrain, and car body to it
 Encoded as “method”, e.g.    c = buildCar(pt, cb)

• Please note: objects represent physical items, not 
data about them

car body

powertrain

«item»
Powertrain

kg mass

«item»
CarBody
kg mass

«item»
Car

kg mass

CD4Phys

CombineCarBody cb

Powertrain pt
Car c

CPF
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Combination of the Car Body and the Engine: Behavior

• Behavior is specified by an automaton

• describing:
 powertrain and carbody are combined

• And also:
 order of arrival: powertrain comes first
 Statechart describes behavior of a component, 

but also obligations for the input

Statechart

car body

powertrain

CombineCarBody cb

Powertrain pt
Car c

CPF

«item»
Powertrain

kg mass

«item»
CarBody
kg mass

«item»
Car

kg mass

CD4Phys

marriage

pt:powertrain /

empty waiting

cb:carbody /
/ buildCar(pt, cb)
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Functions that Combine Material and Energy

• Elementary functions in this category 
 have an interface with channels of mixed sorts i.e. «fluid» or «item» 

and «energy» 
 Perform one of the operations shown on the right

• Examples are: 
 Apply Water with Mechanical Energy (e.g., paddle wheel)
 Separate Chemical Energy from Fuel (e.g. combustion chamber)

combustion chamber

Combining Material and Energy
(Mixed Input/Output forms: «fluid», «item» and

«energy»)

Apply Energy to Materials

Separate Energy from Material

paddle wheel

Software Engineering  |  RWTH Aachen705

• Heating up water:
 apply thermal energy to the water

• Parameter: 
 Thermal conductance: W/K n

• Interface: 
 Incoming material Water i
 Incoming energy: HeatEnergy h
 Outgoing material Water o

• Behavior: 
 Generalization of the Law of convection that abstracts from 

geometry and materialistic properties:  
 o. temp –  i. temp ∗ k =  h. heatflow

Apply Energy to Material: Heating up Water

«energy»

HeatEnergy
W heatflow

«fluid»

Water
K temp

Water i CPF

Water o 
HeatEnergy h 

HeatWater(W/K k)

CD4Phys
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• A water boiler is composed of the functions that 
 Allows manual switching on off the power supply
 Transforms electrical energy to heat
 Heats up the water

• This model reuses
 Switch s (from Chapter 2)
 HeatWater(k)

Functional Composition: Water Boiler

Water i 

CPF

Water o 

HeatEnery h

TransElToHeat(n) t

b. heatflow = 
n ∗ a. current ∗ a. voltage

HeatWater(k) h

i. temp − o. temp ∗ k = h. heatflow

WaterBoiler(W/K k, double n)

Switch s
f.F ≥ fmin

Off
a = 0

On
a = e

f.F ≤ -fmin |f.F| < fmin

|f.F| < fmin

Force f

Electrical-
Energy e

«physics»

Force
N F
ℝଷ dir
ℝଷ pointOfOrigin

CD4Phys«energy»

HeatEnergy
W heatflow

«fluid»

Water
K temp

Electrical-
Energy a
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• Broad definition of a sensor: 

[…] a sensor is a device, module, machine, or
subsystem whose purpose is to detect events or
changes in its environment and send the
information to other electronics, frequently
a computer processor. [Wikipedia]

• Sensors 
 Read information from material or measure energy

 Encode the information as data values or data objects 

 Sensors do not modify the measured things: o = I
 (at least in this abstraction)

Sensors

Sensor
o = i

«material»
Thing i

«data» Measure s

CPF

«material» Thing o
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• An ampere meter measures a current
• Interface: Two contacts, one signal port
 Input energy:  ElEn  a
 Output energy: ElEn b 
 Output data: MCurrent d

• Behavior: 
 Defined by means of energy conservation: 
 b =  a      (disregarding any losses)

 Measurement result (ideally):   d. value = a. current

• Note 1: Some deviation can be specified, e.g.

 d. value − a. current  
< 2% ∗  a. current + additiveMinDeviation 

Ampere Meter

CD4Phys«data»

MCurrent
A value

«energy»

ElectricalEnergy
A current
V voltage

CPF

Amperemeter
Electrical-
Energy a

«data»
MCurrent d

Electrical-
Energy b

1
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• Note 2: The data object uses ideal value i (real 
number) and is not digitized here.

 a more implementation oriented spec could use another  
type like
 A<float> value ampere measured as float

• Note 3: Channel d is discrete in time, while a, b are 
continuous

 a precise definition encompasses 
 time
 sampling frequency
 measurement delay
 + deviation

Ampere Meter and Digitalization

CPF

CD4Phys

Amperemeter
Electrical-
Energy a

«data»
MCurrent d

Electrical-
Energy b

«data»

MCurrent
A value

«energy»

ElectricalEnergy
A current
V voltage
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Vorlagen

ℝ+
time

ℕtime

          
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Motion Sensor

CD4Phys«data»

MotionEvent
cm height

MotionSensorHuman a

«data»
MotionEvent s

Human b

CPF

«being»

Human

• Motion sensor detects movement within its area of 
reach 

• Interface: 
 In/out: Human a
 Out: Event that can be used for triggering some software, 

event can carry additional information e.g. height of person

• Behavior: 
 Humans remain unchanged: b = a

 a[t] ≠ absent  s[t] = MotionEvent(…)

• Items or fluids, e.g.,  in production context, can be 
measured similarly
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• Image Sensors read information transmitted 
through light

• In this case, light acts as a carrier of information 
encoded in its wavelength 
(and we ignore energetic aspects)

• Function of the Image Sensor: 
 Interface: two contacts, one data port
 In: Light a
 Out: Image s

 Behavior: 
 For π:  μm → RGB from e.g. [Bru96] 

 ∀i, j:   s. pixels i, j  =  π a. rays i, j . wavelength

• Similar kinds of sensors: Microphones

Light as A Carrier of Information: Image Sensor

ImageSensor
LightBeam a Image s

CPF

«data»

Image
Matrix<RGB> pixels

«signal»

LightRay
μm wavelength

CD4Phys

«signal»

LightBeam
Matrix<LightRay> rays

1
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Dualism of Light as Carrier of Information and of Energy

• Many items, forms of energy, can be model in various 
ways, e.g. light or also current
 we model the relevant part and abstract the irrelevant 

• A: Light carries information through its wavelength: 
 Encodes color
 Information whether sb./sth. passes by
 …
 Image sensor reads the information encoded in a light 

signal and transforms it into data objects

• B: Light also transports energy through radiation, 
intensity
 Transformers transform this energy e.g., into electricity

«signal»

LightSignal
μm wavelength

ImageSensor
∀𝑖 ∶  s. pixels i =
π a. rays i . wavelength

LightSignal a Image s

TransLightToEl(n, A)
b. current ∗ b. voltage = 
n ∗ a. flux

LightEnergy a
Electrical-
Energy b

«energy»

LightEnergy
W flux

CD4Phys

CPF
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• Definition of Actuator: 

An actuator is a component of a machine that is responsible for
moving and controlling a mechanism or system, e.g., by opening
a valve. […]
An actuator requires a control signal and a source of energy. […]
When it receives a control signal, an actuator responds by
converting the source’s energy into mechanical motion.
[Wikipedia]

• Actuators
 Transform an input energy 
 According to an input control signal or data

Actuators

combustion and electric motor

printer driver
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Electric Motor Actuator

• The electric motor uses the input electrical energy to 
produce the power requested by the input signal

• Interface: 
 Incoming signal   SpeedSig s
 Incoming energy ElectricalEnergy a
 Outgoing energy ElectricalEnergy b

• Behavior
 The actuator produces the speed encoded in the signal: 
 b. speed = s. speedVal

 By transforming the incoming electrical energy: 
 b. force ∗ b. velocity = n ∗ a. current ∗ a. voltage

• Parameter: 
 Efficiency of the energy conversion n

• Again with some simplifications / abstractions …

«energy»

ElectricalEnergy
A current
V voltage

«signal»

SpeedSig
m/s speedVal

ElectricActuator(n)

Electrical-
Energy a

Mechanical-
Energy b

SpeedSig s

«energy»

MechanicalEnergy
N force
m/s velocity

CD4Phys

CPF
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• The printer driver converts a file to be printed into a 
format that a printer can understand

• Interface: 
 Incoming data: Job printjob containing the file to be printed
 Outgoing: Physically printed document

• Behavior: 
 d.text = printjob.f.content

• Abstracts from energy and paper sheets

Printer

PrinterPaper p
Document d

CD4Phys

CPF

«data»

Job «item»

Document
Pixel[][] pages«data»

PdfFile
String content
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Transport of Items

• Transport brings an item from one position to another

• Position is tricky …

• Position is usually modelled as state, but de facto it is 
not internal.
 Component’s context can experience the position of an 

item (e.g. see it)
 Position is relative to a reference point, e.g. earth 

coordinates or relative to a point zero in a room

• The approach:
 The incoming item has a position that is changed by the 

function to the desired destination

• PhysPos describes physical position, orientation, …

Transporter
Something x Something y

CPF

CD4Phys

«item»

Something

«position»

PhysPos
ℝଷ p
Orientation o
m/s velocity 

1

pos
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Transport Specification

• The approach:
 The incoming item has a position that is changed by the 

function to the desired destination

• Transport interface: 
 Item  in/out: Something x

• Only the destination changes: 
y. pos  ≠  x. pos    rest remains unchanged

• We abstract from
 The energy needed to transport x
 The path taken by the function to transport x
 The time needed
 The load (multiple items in parallel?)

Transporter
Something x Something y

CD4Phys

«item»

Something

«position»

PhysPos
ℝଷ p
Orientation o
m/s velocity 

1

pos

CPF
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Transport With Destination Specification

• The approach:
 Add as input the destination position (a data value)

• Transport interface: 
 Item  in/out: Something x
 In: «data» Position dest

• Item arrives at destination : 
y. pos. p = dest. p

• The approach can be used when item is passive 
• The movement of the transporter component is not 

modelled yet

Transporter

Something x

Something y
«data» Position dest

«data»
Position

ℝଷ p

CD4Phys

«item»

Something

«position»

PhysPos
ℝଷ p
Orientation o
m/s velocity 
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pos
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Transport With Destination Guidance

• The approach:
 Add the element to be transport into the transporter 

together with guidance information leading to the 
destination

• Transport interface: 
 Item  in/out: Something x
 In: «data» Control guidance

• A transport with destination specification is realized if 
the controller that calculates the guidance to reach the 
target is taken into the system boundaries 

Transporter

Something x

Something y
«data» Control guidance

«data»
Guidance

ℝଷ xAngle
ℝଷ yAngle
ℝଷ zAngle

CD4Phys

«item»

Something

«position»

PhysPos
ℝଷ p
Orientation o
m/s velocity 

1

pos

CPF

«component»

Transporter
PhysPos pos
Optional<Something> s

CD4Phys
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Mobile Transporter: Van

• The transporter has position and the transported item 
in its state:

• The behavior can be modeled by a hybrid automaton: 

«component»

Transporter
PhysPos pos
Optional<Something> s

CD4Phys

Transporter

Something x

Something y
«data» Position dest

x / s = x

[pos == dest] / y = s

Driving

୮୭ୱ.୮

ୢ୲
> 0 ∧ s.pos = pos

Ready

[s.isAbsent]

Receiving and storing the item

Delivery of stored item

Statechart

«data»
Position

ℝଷ p

CD4Phys

«item»

Something

«position»

PhysPos
ℝଷ p
Orientation o

1

pos

CPF
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Bridging the Methodical Gap: From Function to Component

DataData

LogicLogic Geo-
metry
Geo-
metry

PhysicPhysic

Sys
ML
Sys
ML

Data

Logic Geo-
metry

Physic

Sys
ML

DataData

LogicLogic
Geo-
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PhysicPhysic

Sys
ML
Sys
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Data

Logic
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metry

Physic

Sys
ML

DataData

LogicLogic
Geo-
metry
Geo-
metry

PhysicPhysic

Sys
ML
Sys
ML

Data

Logic
Geo-
metry

Physic

Sys
ML

Sub 
Function

Sub 
Function

Sub 
Function

Require-
ments Function

Function

Function

Domain-Specific
Principle Solution

Subsystem

Subsystem

Subsystem

Component

Component

SystemComponent

Domain Independent
Functional Decomposition

Model Based
Product Synthesis

Customer 
Request

Elementary 
Function

Elementary 
Function

Elementary 
Function

Rules and 
regulations, 
standards,
contest
….

DataData

FunctionFunction
Geo-
metry
Geo-
metry

PhysicsPhysics

Data

Function
Geo-
metry

Physics
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Physical Effects

• Remember: Elementary functions describe a function 
through their interface. 

A physical effect implements the behavior of an 
elementary function. 

• One elementary function can be realized by several 
physical effects (and vice versa) 

• The physical effect also provides aspects of the 
system‘s geometry
 Again there are many possible geometries for one effect

Elementary Functions

Effect Catalogue (350 Effects)
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Catalogues of Mechanical Designs

• Mechanical design catalogue provides

 a set of elementary functions

 a mapping from elementary functions to physical effects 
that are suited to realize the function 

 discussions on limitations, context constraints, etc.

 geometry needed for the physical effect

• Catalogues can be used to find a technical principle 
for realizing an elementary function within a system

• Composition allows to construct complex machinery 
from the atomic solutions of a catalogue

Elementary Functions

Effect Catalogue (350 Effects)
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Functional Modeling of Principle Solutions

A principle solution realizes an elementary function 
such that
 its behavior is defined by a physical effect 
 parametrized by the active surface and material 

• Active surface: Geometric interface (parameterized)
• Engineering Material: Materialistic parameters

• Example: Wheel realizing a converter 
 interface has of two contact points: 
 In / outgoing  for mechanical energy

 Parameters: describe geometric properties: 
 Distances m rଵ, m rଶ of contacts from rotation axis

 Behavior described by the lever principle (physical effect)
 a. force ∗ rଵ = b. force ∗ rଶ and   

 a. velocity =
୰ଵ

୰ଶ
∗ b. velocity

Wheel(m r1, m r2)

Mechanical-
Energy a

Mechanical-
Energy b

geometric properties

m r1
a.force

m r2

b.force

Principle Solution1
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• A lever with distances rଵ, rଶ realizes the converter with n =
୰భ

୰మ

• Contact points are the active surfaces on which the modeled effect acts

Physical Effects Realize the Behavior of Elementary Functions

Realizes

Converter(n)
b. force ∗ b. velocity =
 n ∗  a. force ∗ a. velocity

Mechanical-
Energy a

Mechanical-
Energy b

m r1

a.force

m r2

b.force

Principle Solution

CPFCPF

Elementary Function

Mechanical-
Energy a

Mechanical-
Energy b

Wheel(m r1, m r2)
b. force ∗ b. velocity =
r1 r2⁄ ∗  a. force ∗ a. velocity

Mechanical-
Energy a

Mechanical−
Energy b
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Example: Gear Unit as Composition of Wheels

• A gear unit is composed of multiple Wheels 
(here: two)
 The transmission defines a function that is the 

composition of the functions of the two wheels: 

• Functional model GearUnit(r1..r4)
 In MechanicalEnergy a
 Out MechanicalEnergy b
 Internal components:
 Wheel w1 = Wheel(r1,r2), 

w2 = Wheel(r3,r4);
 Composition: 
 GearUnit(r1..r4)(a)  =  w2(w1(a)) 

• Result:
 GearUnit(r1..r4)   also realizes Converter(n)  

for n = (r1*r3) / (r2*r4)

Composed Geometry : 

m r2

a.force

b.force

a

b

m r4

m r1

contact point w1.b = w2.a

Wheel w2

Wheel w1

GearUnit(r1..r4)

Wheel(m r3, r4) w2
b

Wheel(m r1, r2) w1
a 𝑐

c

m r3

CPF
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Considering Losses

• A wheel that considers losses has an additional 
output channel: 
 Parameters: Distances m rଵ, m rଶ

 Interface with three contact points: 
 In: Mechanical energy Force a
 Out: Mechanical energy Force b
 Out: energy  loss

• The behavior is extended by an equation telling what 
is produced on the loss-output
 b. f = a. f ∗

୰ଵ

୰ଶ 

 b. f ∗ b. v =
୰ଵ

୰ଶ
∗ a. f ∗ a. v

 loss = b. f ∗ b. v − a. f ∗ a. v = a. f ∗ a. v ∗ 1 −
୰ଵ

୰ଶ

m r1
a.F

m r2

b.F

Principle Solution

CPF

WheelWithLoss
(m r1, m r2)

MechEn a
MechEn b

Power loss
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Considering Losses: Friction

• Include losses, e.g., by considering friction:

• Additional Parameters: 
 Friction coeffictients: ℝ 𝜇஽, ℝ 𝜇ௌ

 Normal Force: N FN

• Behavior : 
 Force implies only dry friction: a. F ∗

୰ଵ

୰ଶ 
≤ μୈ ∗ F୒ ⇒

 b. f = a. f ∗
୰ଵ

୰ଶ 
 ∧

 loss = a. f ∗ a. v ∗ 1 −
୰ଵ

୰ଶ

 Force implies sliding friction: a. f ∗
୰ଵ

୰ଶ 
> μୈ ∗ F୒ ⇒ 

 b. f = μୗ  ∗ F୒  ∧ 
 loss = a. f ∗ a. v − μୗ ∗ F୒ ∗ b. v

m r1
a.F

m r2

b.F

Principle Solution

CPF

WheelWithFriction
(m r1, m r2, ℝ 𝜇஽, ℝ 𝜇ௌ, N FN)

MechEn a
MechEn b

MechEn loss

friction.F

Refines WheelWithLoss
only in this case!
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Refinement in Context

• Wheel with friction is more precise than the wheel but 
is formally not a refinement

• Add invariant & parameter Fmax to the Wheel-
Function: 
 a. f ≤ F୫ୟ୶ ⇒

-  a. f ∗ rଵ = b. f ∗ rଶ  ∧ 

- a. f ∗ a. v =
୰ଵ

୰ଶ
∗ b. f ∗ b. v ∧

- loss = b. f ∗ b. v − a. f ∗ a. v = a. f ∗ a. v ∗ 1 −
୰ଵ

୰ଶ

• Now, WheelWithFriction refines WheelWithLoss: 
 Refines the case  a. f ≤ F୫ୟ୶ → a. f ≤ μୈ ∗ F୒

 Completes the specification by adding a specification of 
the behavior in case a. f > μୈ ∗ F୒

WheelWithLoss
(m r1, m r2, N Fmax)

MechEn a MechEn b

WheelWithFriction
(m r1, m r2, ℝ 𝜇஽, ℝ 𝜇ௌ, N FN)

MechEn a
MechEn b

MechEn loss

CPF

CPF

refines
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Modeling Physical Effects: Electromagnetic Induction

• Electromagnetic Induction is a physical effect

• Current-carrying wire within a Magnetic Field 
experiences a Force (Lorentz-Force):
 Length is a geometric property  parameter of the 

function

• Wire has a physical position within the magnetic field
 Orientation of the wire yields an angle 𝜑 to the magnetic 

field

• Defines e.g. the physical effect used in electric 
engines

• Abstracts from 
 energy losses, e.g. heat 
 tilting of the wire loop in the magnetic field 

CD4Phys
«physics»

MagneticField
T fluxdensity
ℝ3 dir

«energy»

ElectricalEnergy
A current
V voltage

«energy»

MechanicalEnergy
N force
m/s velocity

m s

ElectricalEnergy a

+−

Mechanical-
Energy c

MagneticField  b

rad 𝜑

«position»

PhysPos3DOrientation
ℝଷ p
ℝଷ orientation
m/s velocity 

«component»

Wire
1

pos

Wire w

w.pos.orientation
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Modeling Physical Effects: Electromagnetic Induction II

• By electromagnetic induction, a flowing current within a 
magnetic field induces a force 

• Model this physical effect as composition of two functions:
 Wire: 

 Parameter: Length s of the wire, flux density of the magnetic 
field

 Interface with three contact points
- Incoming electrical energy: ElectricalEnergy a
- Incoming magnetic flux: MagneticField b
- Outgoing mechanical energy: MechanicalEnergy c

 Behavior, with ∡ b. dir, w. orientation = 𝜑
- c. force = s ∗ b. fluxdensity ∗ a. current ∗ cos 𝜑 ∗ sin(𝜑)
- c. velocity = s ∗ b. fluxdensity ∗ a. voltage ∗ cos 𝜑 ∗ sin(𝜑)

 Permanent magnet is a magnetic flux-source that supplies a 
constant magnetic flux 
 Parameter: Magnetic flux supplied (depends, among others on 

material)
 Behavior: b. fluxdensity = B Abstracts from energy losses

Wire(s) w

Electrical-
Energy a

Magnet(B) pm

MagneticField b

ElectromagneticInduction (T B, m s)

Mechanical-
Energy c

CPF
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«physics»

MagneticField
T fluxdensity
ℝ3 dir

«energy»

ElectricalEnergy
A current
V voltage

«energy»

MechanicalEnergy
N force
m/s velocity

«position»

PhysPos3DOrientation
ℝଷ p
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• Iff ∡ b. dir, i. dir = 𝜋 2⁄ holds, ElectromagneticInducton
realizes an ElectricalEngine with n =  s ∗ B ଶ

Electromagnetic Induction Realizes a Transformer

Realizes

Elementary Function

ElEn a MechEn b

TransElToMech(n)
b. force ∗ b. velocity
= n ∗ a. voltage ∗ a. current

Electrical-
Energy a

Mechanical-
Energy b

Principle Solution

m s

ElEn a

+ −

MechEn c

T B  b

CPF

CPF

Wire(s) w

Electrical-
Energy a

Magnet(B) pm

MagneticField b

ElectromagneticInduction (T B, m s)

Mechanical-
Energy c
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• Goal: Increase system availability and performance of systems by
 Analyzing physical processes and judging, predicting and optimizing virtually
 Providing data from physical system to complete simulations, validate settings and 

dynamically adjust
 Analyzing results and feeding back to respond to the  changes

• Term “twin” originates from NASA: Build a physical copy of aircrafts to simulate 
and test control scenarios

• Today: Digital Twins normally are virtual representations of physical things:
 digital models about the physical thing 
 data about/of the physical twin

• Realizing new technologies requires close collaboration of experts and 
connecting various models

History of Digital Twins
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Digital Twin Definition, V2.1

Physical 
system

Data

Data / Information system

Control,
condensed 
information

A Digital Twin of a system consists of 
• a set of models of the system and
• a set of digital shadows, both of which are purposefully updated on a regular basis, and
• provides a set of services to use both purposefully with respect to the original system.
The digital twin interacts with the original system by
• providing useful information about the system’s context and
• sending it control commands.
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Digital Shadows as Part of the Digital Twin

• Physical world contains observable elements that 
can be monitored, sensed, and may be actuated and 
controlled

• Data Collection & Device Control interacts with the 
physical world to observe and influence its behavior

• Creates digital shadows based on data about the 
physical world and queries/specifications from the 
digital twin applications

may embody 
software too

pure software

the complete system

• Further Reading: www.se-rwth.de/essay/Digital-Twin-Definition/

A Digital Twin of a system consists of 
• a set of models of the system and
• a set of digital shadows, both of which are purposefully updated on a regular basis, and
• provides a set of services to use both purposefully with respect to the original system.
The digital twin interacts with the original system by
• providing useful information about the system’s context and
• sending it control commands.
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• Large amount of data 
 Real-time processing
 History based
 Storage, e.g., in cloud

• Reduced data set may be sufficient to gain insight 
about the system's state

• Data quality depends on sensor, sampling rate
• Metadata missing (units, date of measurement)

• Sensors over time create data sets, that may be:
 Very detailed, or
 Time reduced 
 Quantitatively reduced 
 Preprocessed 
 Qualitatively reduced (black and white instead of 

colored picture)
 Enriched with metadata

Modern Systems are Monitored by Many Sensors

CPPS: Injection Molding

Drying Duration

Cavity Pressure
Cavity Temperature

Material Temperature
Volume

The mean temperature at the cavity over
the last 10 minutes was 146.6°C. This
value is computed with algorithm
meanvalue() and a sampling rate of 10s.

Relevant image
snippet for QA of
latest part
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Digital Shadows
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Data acquisition and -
preprocessing

Production

Use-case-specific digital shadows 

Physical World

Digital World

• A digital shadow is

• a passive set of data

• information source about a system's state and history

• is collected, filtered and reduced for its dedicated purpose in 
varying forms of abstractions

• a purely digital artifact

• produced by a (physical) system.

• A system can have many different digital shadows describing a 
variety of different aspects of the system in different detail and at 
different times.

• Shadow may contain information about production systems, 
production processes, products, and human operations

• A Digital Shadow is a set of contextual data traces and their 
aggregation and abstraction collected for a specific purpose with 
respect to an original system.
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A Digital Shadow Reference Model
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time
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EngineeringModel
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*
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Further Reading:
www.se-rwth.de/essay/Digital-Twin-Definition/
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• The central scientific approach of the IoP are Digital 
Shadows as mediators between the vast amounts of 
heterogeneous data and detailed production 
engineering models, meaning:

 Sufficiently aggregated, multi-perspective and persistent 
datasets

 Generated by deliberate selection, cleaning, semantic 
integration and pre-analysis

 Used for reporting, diagnosis, prediction and 
recommendation in domain-specific real-time

• The Internet of Production is a huge project:

 87,5 researchers (up to 2x7 years)

 13 research managers 

 4 support positions

 Overall ca. 200 employees

The Internet of Production develops techniques for digital shadows and digital twins

• TODasdfsO

… not only one-time, but 
rather continuously and 
highly iterative in real 
time with the adequate 
level of granularity…

… not only one-time, but 
rather continuously and 
highly iterative in real 
time with the adequate 
level of granularity…

Providing semantically 
adequate and context 
aware data from 
production, development 
and usage in industry…

Providing semantically 
adequate and context 
aware data from 
production, development 
and usage in industry…

The theme of the Internet of Production:The theme of the Internet of Production:
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Data and Models must become available for cross domain use

(from IOP)
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Conceptual Model for Digital Shadows & Example in the IOP [BBD+21]
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Minimize Rejection
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of Single Job
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of Single Job
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X IMM-B 1 %
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DT Factory-A

DSDSDS

Service E

Service F

DT Shopfloor-A

DSDSDS

Service C

Service D

The SE-Vision within the IoP

Physical World Digital World

Digital Twin
Machine-A DT M-B

DT M-C

DSDSDS

Service A

Service B

Data Lake

DT S-B
DT S-C

World-Wide Lab

AI Algorithm

DT F-B

DT F-C

Tool 1: Digital Shadow Type Creator
• generate DS-Types which can be used during

runtime to create DSs
• define relevant models, data and meta-data
• select data sources from the data lake
• based on MontiGem (GUI)

Tool 2: Low Code DT Platform
• create configurable DTs
• services for data extraction from engineering models
• definition of meta-data and connection to ontologies
• API‘s to other services, e.g. AI algorithms
• integrated process mining services
• based on MontiGem (GUI)

Provide Engineering Tools & Methods

Our aim:

Efficient development of digital twin services
based on digital shadows
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Use Case (Szenario): Factory for the production of metal blanks

• Production of metal blanks
 Producing factory
 Blanks in various shapes
 with threaded hole
 with round bores 

 Deformed 
 Come in different colors
 Can be heated for further processing steps

• Different views and roles
 Users can view goods, place orders, view the status of 

orders
 Monitoring for purchasing: material stock, throughput, 

demand prediction
 Monitoring of the factory: capacity utilization, status, 

errors

• And then AR
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Fischertechnik workpieces and functions

workpieces

Heating

Deformation

Workpieces are delivered 
unsorted, are sorted, 
counted and stored here

Storing
(Material 
and 
Product)

Thread 
drillingRound 

drilling
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Kinds of Digital Shadows

• Different physical entities, very different, purpose 
specific kinds of data models
 e.g., BIM, Google Earth, CAD, Conceptual Models

˙˙˙
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• Health: monitoring, diagnostics, and prognostics
 Simulators for medical training and education

• Automotive:
 Predicting driving behavior 
 Monitoring for predictive maintenance

• Aerospace: virtual product development and flight test scenarios

• Construction and Energy Efficiency: 
 Monitoring structural health of sensor modules
 Process automation with intelligent sensors and methods for calibration

• Games, Media, and Entertainment: 
 Visual and physical motion sensing for three-dimensional motion capture

• Manufacturing: Automating production and reacting if necessary

Various Purposes of Digital Twins in the Application Domains
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• Chair’s offices can be visited virtually

• Lights, a metal ring and fans are synchronized 
between the real world and the digital twin

• Technologies: Meta Quest 2&3, Unreal Engine, 
MQTT, Arduino/Raspberry Pi

Digital Twin of SE

IoT 
Device

MQTT 
Broker

VR 
/ Unreal

MBSE
18. Digital Twins
18.3. Services, Cockpits

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen 
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Purposeful Services are Part of a Digital Twin

• Digital Twin Applications & Services take actions based on 
one or more situations that they sense in the environment

• User can access Digital Twin Applications & Services through 
appropriate interfaces

• Digital Twin has (some) strategic control over his physical twin
 usually high-level, the real-time control strategies are embedded in 

the CPS

A Digital Twin of a system consists of 
• a set of models of the system and
• a set of digital shadows, both of which are purposefully updated on a regular basis, and
• provides a set of services to use both purposefully with respect to the original system.
The digital twin interacts with the original system by
• providing useful information about the system’s context and
• sending it control commands.
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Terms share some characteristics, but:
• Twin is an active software system (through services)

• Model prescribes the system under development 
and at operation

• Shadow is passive data produced during operation 

Digital Twin vs. Digital Shadow vs. Model

A Digital Shadow is a set of contextual data traces and 
their aggregation and abstraction collected concerning 
a system for a specific purpose with respect to the 
original system.

A model is essentially a reduced or abstracted 
representation of the original system in terms of 
measure, precision and functionality. (Stachowiak 1973)

A Digital Twin of a system consists of 
• a set of models of the system and
• a set of digital shadows, both of which are purposefully updated on a regular basis, and
• provides a set of services to use both purposefully with respect to the original system.
The digital twin interacts with the original system by
• providing useful information about the system’s context and
• sending it control commands.
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• Literature currently is unclear, whether a digital twin is part 
of the CPS or beneath to it

• A useful viewpoint: 
• The overall system contains the physical part, sensors, 

actuators the embedded controls, data collection, services 
and user interface

• The overall system is engineered in an integrated project 
considering physical and IT part in parallel

• Digital Twin builds a logical entity, but its software 
components may be distributed

Cyber-Physical Systems and Digital Twins

Cyber-physical systems (CPS) are engineered systems 
where functionalities are emerging from the networked 
interaction of physical and computational processes. 
[BDS19]

Digital Shadows

Physical World

Data Collection & Device Control

Personnel Material Equipment Process

Applications & Services
Model 

Processor 
Analytics Health Check Predictive

Maintenance
…

User
Human Device Other System Digital Twin

…

Environment

Digital Twin

UI
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• Literature currently is unclear, whether a digital twin is part 
of the CPS or beneath to it

• A useful viewpoint: 
• The overall system contains the physical part, sensors, 

actuators the embedded controls, data collection, services 
and user interface

• The overall system is engineered in an integrated project 
considering physical and IT part in parallel

• Digital Twin builds a logical entity, but its software 
components may be distributed

Cyber-Physical Systems and Digital Twins

Cyber-physical systems (CPS) are engineered systems 
where functionalities are emerging from the networked 
interaction of physical and computational processes. 
[BDS19]

CPF

Digital Twin

Physical System

System

«material»

«energy» «energy»

«material»

«data» «data» 

«data» 
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• Depending on the lifecycle phase a Digital Twin offers different services to 
control/adapt/represent the physical system

• During Concept and Development, a Digital Twin acts as integrated 
collection of development artefacts and/or simulates the behavior of a CPS
 Supports communication engineers and designers while working together 

across departmental boundaries 
 Evaluates product variants to support design decisions

• During Production, a Digital Twin
 Supervisee the production process, e.g., individual deviations from norm 

that require special treatment
 Tracee the applied materials, components, processing steps

• During Utilization and Support a Digital Twin
 Provides information on system state, history and usage
 Enables optimization of a machine during operation
 Facilitates the improvement of future products
 Enables predictive maintenance

Digital Twins Support all Lifecycle Phases of a System

Concept

Support Production

DevelopmentRetirement

Utilization

System Lifecycle from ISO/IEC 15288
(Systems Engineering standard)

MBSE
18. Digital Twins
18.4. Developing a Digital Twin

Prof. Dr. Bernhard Rumpe
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• Services of a Digital Twin are intensively connected to the CPS
 Integrated parallel development 
 NOT only a spin-off product of the development of the physical system 
 may be configurable, can be parameterized or calibrated 
 new services may be coming over time

• Adaptivity through explicit models at runtime: 
1. Autonomous self-adaptation, e.g. induced by changes of the context, 

optimizations identified for example through continuous measurements or 
by a slow degradation of the system itself

2. The user wishes to adapt the system behavior

3. The manufacturer adapts the system behavior according to identified 
optimizations, fixing of bugs and failures, or upgrade of functionality

• Challenge: 
Development cycles/methods for CPS and IT differ radically

Development Process of CPS and Digital Twins

shared models 
as common base
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• Factory decomposed along two dimensions
 DT’s are composed
 Physical components are composed to a system

 But ideally: Physical component + its twin 
is developed / purchased / shipped together

Composition of Digital Twins

CPF

Com
p. 1

Com
p. 2

Com
p. 3

DT1 DT2 DT3

Physical System

Digital Twin

System

Quality 
Assurance

Twin

Assembly
Twin

Screwdriver
Twin

Factory Twin
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The function paradigm provides the methodological and organizational foundation for smart 
digital twins services. 

• A system defines a cyber-physical function
 physical and computational structure 
 performs data, energetic and physical transformations
 and is connected to its environment through its interface

• Functional modelling paradigm allows for
 Clear definition of component interfaces / behavior
 Data, energy, and material streams model interactions of 

components
 Decomposition
 Composition from atomic Principle Solution Models
 Abstraction in modelling
 Basis for simulation 

The functional paradigm specifies the energetic, materialistic and computational behavior of a CPS within a 
system architecture with a mathematically sound semantics.

system boundarystreams: input streams: output

Cyber-
Physical 
System

Energy

Material

Data

Functional system architecture
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Model-Driven Digital Twin Creation

Engineering Models
CD 

BDD 
IBD

CAD

Model Extractor and
Generator 

Runtime
Data

Digital 
Shadow Structures

Generate

Shadow 
Representation

(X,Y,Z)

Digital Shadow Caster

• Cyber-physical systems are complex
 Consist of multiple components
 Offer different functionalities

• Reuse engineering models that are created during system design 
for systematic efficient definition of larger parts of a Digital Twin

• Generate a Digital Shadow Caster that accesses the CPS and 
displays potentially interesting Digital Shadows from Engineering 
Models

• Extract structural information about the CPS 
 How is the CPS composed

• Spatial Information
 Where are the CPS and its internal components located

• Expected behavior 
 How should the system react to a specific situation
 Derive, when the system does not behave as intended
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• Repository of data stored in its natural/raw format, usually object blobs or files
 Include structured data from relational databases (rows and columns)
 Semi-structured data (CSV, logs, XML, JSON)
 Unstructured data (emails, documents, PDFs) 
 Binary data (images, audio, video)

• Data Lake stores all data - regardless of relevance, structure and purpose

• Data stored independently of source and structure
 Remain in original form and only prepared when needed
 "Schema on Read"-Principle: data is only structured when it is read 

• Data Lake e.g., based on Hadoop
 Distributes the storage and computation of the data over many nodes of a cluster
 Data in large quantities can be processed quickly

Data Lake 
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That realizes a MAPE-K self-adaptive loop over the CPPS 

Model-Driven Digital Twin Architecture [BBD+21a, DMR+20, BDH+20]
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• MontiArc reference 
architecture 
• Uses data lake and asset
• Creates digital shadows
• Evaluates state and acts

• Domain-specific models
• trigger shadow creation
• connect to data lake
• case-based reasoning
• connect to CPS

• Services: Representation, 
monitoring, optimization

MontiArc

Digital twin: models + contextual data + services used purposefully w.r.t the physical system.
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Generating digital twin cockpits from models 
with the generator framework MontiGem

• Successfully applied to research and 
real-life projects
 MaCoCo, Engineering Wind Turbines, InviDas

see: https://www.se-rwth.de/projects
 Digital twin cockpit: Injection Molding [DMR+20] 

• Components of the digital twin cockpit application
 Database, backend and frontend of a web 

application, communication infrastructure 

• Used models, e.g.,
 Domain model: data structure
 GUI models: user interfaces
 Data models: representation of parts of data in GUIs
 OCL models: validation of data input

Creating Digital Twin Cockpits with MontiGem [DMR+20] 

Interfaces

DT Services Frontend

MontiGem 
GENERATORS

Tagging 
Model

Domain 
Model

GUI
Model

Data 
Model

Digital Twin Cockpit

Backend

Data Storage
Admin Role1 Role2

Digital Twin

DT Services

3rd party 
Applications

CPPS

Generation Process

OCL 
Model

Interfaces

Digital Twin
User Interfaces

[DMR+20] M. Dalibor, J. Michael, B. Rumpe, S. Varga, A. Wortmann: Towards a Model-Driven Architecture for Interactive Digital Twin Cockpits. ER’20
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• Aim: improve the operation 
of digital twins 
 process discovery from 

event logs and 
 process prediction from 

process models at runtime 

• Models at designtime
 Application-specific models, 

e.g. domain model, GUI 
models, …

 Application independent 
models, e.g., architecture, 
basic DS and process 
structure,…

• Models at runtime
 process models, goals, 

actions,…

Process Prediction with Digital Twins [BHK21]
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with Wil van der Aalst, István Koren, Merih Seran Uysal, Tobias Brockhoff (PADS RWTH Aachen University)
and Andreas Wortmann (University of Stuttgart)Presentation in Oct. 21 at MODELS@run.time Workshop 
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• Digital twins configured and operated by 
shop-floor experts (rarely professional 
software engineers)

• 2-step generation process
 We generate the low-code platform
 Shop-floor experts configure a digital twin via 

the low-code platform and
 generate one or more digital twins

• Enablers
 model-driven digital twin architecture and 

toolchain
 model-driven toolchain for generating

information systems
 reuseable language components, services

and models

Low-Code Platforms for Model-Driven Digital Twins [MW21]

MontiGem Design-Time Models
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with Andreas Wortmann (University of Stuttgart)Presentation today at APMS conference
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Model-Driven Digital Shadow Creation

Engineering Models
CD 

BDD 
IBD

CAD

Model Extractor and
Generator 

Runtime
Data

Digital 
Shadow Structures

Generate

Shadow 
Representation

(X,Y,Z)

Digital Shadow Caster

• Cyber-physical systems are complex
 Consist of multiple components
 Offer different functionalities

• Reuse engineering models that are created during system design 
for systematic efficient definition of larger parts of a Digital Twin

• Generate a Digital Shadow Caster that accesses the CPS and 
displays potentially interesting Digital Shadows from Engineering 
Models

• Extract structural information about the CPS 
 How is the CPS composed

• Spatial Information
 Where are the CPS and its internal components located

• Expected behavior 
 How should the system react to a specific situation
 Derive, when the system does not behave as intended
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AUTOtech.agil Project: Model-Driven Digital Twin for Vehicle Diagnostics

• Goal: shaping future 
software and E/E architecture
 Layers controlled by the

Service Orchestrator

• Our job: Model-driven generation of diagnostic DTs

• Four layers
 The Driving Mode layer manages active modes
 The Functions layer organizes vehicle functions
 vehicle functions are functionalities dependent on 

multiple different services, e.g., door control
 The Service layer: active services + connections
 The Physical layer maps services to ECUs
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AUTOtech.agil Project: Model-Driven Digital Twin for Vehicle Diagnostics -2

• Our job: Model-driven generation of diagnostic DTs
 services, SOVD-compliant interfaces,

data containers for digital shadows

• Architecture models vehicle functions and their 
structure
 to simulate the expected behavior
 to compare of real vs expected behavior

• CDs + OCL as model basis
 function classes model input/output data 

(storage logs of Digital Shadows)
 kinds of software errors 
 predefined error-kinds specific diagnosis queries

• Pre-processing data in the vehicle services
 mobile data-plan, because constraints on transmission
 aggregation, compression 
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Outlook Digital Twins

• A digital twin can

 Boost production efficiency 

 Optimize performance of products in the field

 Enable more accurate predictions and what if 
scenarios from usage 

 Process and advise operators in complex scenarios

 Give strategic control to the CPS

 Identify correlations between scenarios, learn and 
improve during their application
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The digital twin enhances engineering models with data and synthesizes insights from system 
level analyses and optimizations. 

Digital Twin

Digital Twin Cockpit: Smart Applications & Services
RealTime
Control 

Smart
Analytics

Sanity 
Checks

Predictive
Maintenance…

Personnel Material EquipmentProcess Environment

Data Collection & Device Control

Functional Model of the System

Data acquisition & propagation
Big Data systematizes empirical knowledge 
obtained from live-data

Knowledge Management
Artificial Intelligence extracts knowledge from data 
and propagates it as necessary

Functional Systems Engineering
unifies system functions and physical parts in a 
model that serves as digital replica of the entire 
system and structures engineering models by the 
innovation driver – the function

System Level Analyses & Optimization
Machine learning and reasoning automate tasks 
e.g., verification and design optimization
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• Anhang
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Some Digital Twin Use Cases
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Problem: Brownfield vs. Greenfield

• V-Model, RUP, etc. are greenfield development 
processes:
 They assume a fresh project every time
 They are good for understanding the overall organization, 

but ignore existing, reusable assets.

• Brownfield project relies on
 Already existing product from the last version
 Existing models and their relations of al sorts
 Knowledge about problems, improvable functions, …
 Changed requirements

• Existing project is legacy as well as a good starting 
point

• Brownfield also happens when:
 Fixing bugs
 Quickly adding a new feature (even after shipping …)

From greenfield 
process

to evolution of its 
artefacts:
a “cabinet” full of 
artifacts with relations 
of all kinds

Analysis 
specification

Design

Implementation 
/ Construction

Testing
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• Brownfield:
 We evolve the cabinet of artefacts in parallel,

but not top-down
 Bug fixing   implementation artefacts
 Redesign  Architecture / Design
 Requirements change  Analysis

• Tracing the relations between artifacts is essential
 Automatic consistency checking
 Automatic change propagation (upward and downward)

• Even better:
 Automated generation reduces the set of artifacts to evolve
 Automate build with a build script
 Automate testing (e.g., junit-like) and simulation (e.g., simunit)

Brownfield: Evolution of Existing Artefacts

“cabinet” full of artifacts with relations of all 
kinds is evolved, ideally while keeping all 
artefacts consistent to each other

Analysis 

Design

Cons-
truction

Testing

Version V1 V2 V3
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• MBSE – Parameter triggered processes by global transparent modelling of the entire design process

Example: Wind Turbine

…
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Product Line Development: Separate Domain and Application Engineering
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n
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n
ee

rin
g Product-

management
Domain

Test
Domain

Implementation
Domain
Design

Domain
Requirements

Elicitation

Domain Artefacts incl. Variability Modell

Requirements TestsArchitecture Components

Application
Test

Application
Implementation

Application
Design

Application
Requirements

Elicitation

Requirements TestsArchitecture Components

Application 1 – Artefacts in Single Variant Version
Application n – Artefacts in Single Variant Version
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Description of Variability through Feature Diagrams

• A feature is a piece of functionality tangible by a 
customer

• A feature diagram describes the set of valid 
configurations
 Box = feature
 Dependencies of form and, or, xor
 Additionally: B requires D ,   B excludes E

• A feature configuration is then a subset, e.g.
 Tacho, Klimatronic, Driver Seat, Navigation
 It describes possible configurations to ship a product

• FD’s usually result from a domain analysis

Klimatronic

Handy
Adapter

Ventilation

NavigationTacho

Car
optional

alternative
features (xor)

mandatory

FD

Co-Driver
Seat

Driver
Seat

or
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• Features in the FD 
correspond to model 
elements in other models

• 150% models may contain 
all features, and a subset is 
then selected

• Problems:
 150% models may not be 

valid models (e.g. alternatives 
cannot be expressed, etc.)

• Integrated 150% model 
belongs to a new language

Features may Select Model Elements in Other Models

Manual

Door Lock

Electronic

Lock
Authentication

requires

Lock Control

Electronic 
Door Lock

Manual 
Door Lock

Authentication
Manager

FDCpD
UML Component Diagram

or
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Variability in Component Definitions

• Architecture model with optional components, 
ports, and connections

• Selected features control if optional components 
are instantiated

• A concrete architecture variant depends on the 
selected features and their mapping to optional 
components

Breaking

ACC

EACC

Sensors

Camera Radar LIDAR

Extension

AdaptiveCruiseCntrl

accelerate

PIDCntrl

Throttle

BreakSelectEACCBreak

SafeDist

curSpeed

o
b

jD
is

t
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d

AccCmd
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h
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e
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BreakCmd

D
is

ta
n
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Distance

ThrottleDiff

or xor
Dashed components:
exist only if feature is selected
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Automaton Example with 3 Features

• Base language: Automaton

• Color (and numbering) demonstrate 
the three features
 (color is not part of automata)

• Variation points for automata can be 
the language constructs:
 State (can be added)
 Transition (can be added, redirected)
 Alternate signals
 Initial / final state marker

• Some states / transitions belong to the core model 
(black), others to specific features

𝑂𝑓𝑓 𝑆𝑡𝑎𝑛𝑑𝐵𝑦

turnOn

turnOff

𝑊𝑜𝑟𝑘𝑖𝑛𝑔

start

turnOff

finished

𝐹𝑎𝑖𝑙𝑢𝑟𝑒

error

𝐴𝑏𝑜𝑟𝑡𝑒𝑑

abort
restart

ε

1

1

1

2

2

23

2&3
abort

Automaton
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Automaton Example: No Feature Selected

• If no features are selected, a minimal 
automaton describes the core 
functionality 

• Typical working engine with three states, 
but unable to cope with errors

𝑂𝑓𝑓 𝑆𝑡𝑎𝑛𝑑𝐵𝑦

turnOn

turnOff

𝑊𝑜𝑟𝑘𝑖𝑛𝑔

startfinished

Automaton
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Automaton Example: 2 Features Selected

• An extractor transforms the product line 
model into a base model 

 Based on a feature configuration
 Calculating minimal complete set of features

(ErrorRecovery requires ErrorHandling)

 Deletes non-selected features 
 And keeps model elements of selected 

features

• The automaton model can now be further 
used for the defined variant of the product 
line.

𝑂𝑓𝑓 𝑆𝑡𝑎𝑛𝑑𝐵𝑦

turnOn

turnOff

𝑊𝑜𝑟𝑘𝑖𝑛𝑔

start

turnOff

finished

𝐹𝑎𝑖𝑙𝑢𝑟𝑒

error
restart

1

1

1

3

Automaton
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• “Automation has proven to be the single most effective means of making dramatic improvements in both 
productivity and product quality” 

Bran Selic, 2019
• Automating :
 Generation, synthesis
 Constructive derivation of implementations or more detailed forms of models
 Transformation
 Correctness by construction

 Analysis
 Consistency checking, completeness, well-formedness rules, etc.
 Applicability of transformations 
 Automatic verification

 Testing

 Simulation 
 As a technique for testing and dynamic analysis

Automation Of Development Steps
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Artefact View: Many Artefacts and Many Types of Artefacts

• Examples: 

 Requirement document,
 SysML model, UML, model, config file, build script, 
 Variant list, task, 
 CAx file, decision description,
 Code, prototype,
 Test, test result, …

• Roughly: 
 Each file is an artefact, 
 But data bases and archives also contain artefacts

Project

An artifact is an individually stored and 
referenceable unit containing relevant information 
in a software or systems development project.

Definition
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Example 2: RUP Workflow with Activities and Artifacts

Workflow Details:
Roles, Activities
and their Artifacts

in the Architectural
Design Workflow

Architect

Review the 
Architecture

Supplementary 
Specifications

Identify Design 
Elements

Architecture 
Reviewer

Incorporate 
Existing Design 

Elements

Identify Design 
Mechanisms

Risk List

Software 
Architecture 
Document

Design 
Guidelines

Design 
Model 

Analysis 
Model

Rep.
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Artefacts and Their Relations

• … are the basic constituents for the development 
process

• Various kinds of relations exist:
 Derived from
 Refinement of
 Compiled to
 Replacement of 
 Trace 

• Observations: 
 Understanding artefacts and relations is key 

for assessing a development project
 Artefact model similar to PLM for the development

Artifact 1 Artifact 2
relates to

(Visualizations of retrieved artifact models)

Software Engineering  |  RWTH Aachen796

More Observations: 
• Various forms of relations exist: They depend on the models used.
• An artefact model captures the kinds of artefacts and kinds of relations
• Tooling allows to view, select, filter and also to check architectural constraints, etc.

Artefact Model

Project

Artefact model
structures

Project analyzer
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• If “B is derived from C”, then B contains (partially) the 
same information from C. B may have more 
information or a different representation. 

• C could be thrown away (or ignored), if all information 
was derived to B.
 C was a result of an “earlier” activity than B.

• Derivation is acyclic (a directed acyclic graph)

Two Classes of Artefact Relations

• Many kinds of relations, but: they can be cklassified
• in only two forms of relations 

 “B uses A”, 
e.g. import in Java (also called “dependency”),

 “B is derived from C”, 
e.g. class files are derived from Java source

• If “B uses A” then both artefacts A, B are relevant for 
the subsequent activities. 

• They contain different pieces of information, but B 
uses symbols that have been introduced in A. 

• B is syntactically coupled to A.
 use of B enforces use of A.
 change of A may lead to a change in B.

• Usage may be cyclic

B A
uses

C

derived 
from
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• For the derivation relations, we see several degrees of automation:

• B is manually derived from A 
 Costly labor has been spent by a developer

• B is generated fully automatically from A
 Cloud / computer power is cheap: No cost at all

• Mixtures with variable degrees of automation are possible:
 (1) B is manually derived from A, but inconsistencies can be detected if A or B change.
 (2) a trace can be established allowing to constructively propagate changes on A to B. 
 (3) ... and also to propagate changes backward from B to A.
 (4) an explicit transformation has been scripted that allows to redo the derivation of B from A
 But: Trace and transformation are also artifacts!

Degrees of Automation of Artefact Relations

A B

A B
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• Artifacts evolve

• This is also a derivation relation, 
usually a manual derivation

• Artifact A exists in versions 
A1, A2 , A3, …

• Only the current version 
is relevant

• Typical version controls:
 git, svn

Artifacts Evolution Over Time

time

artifacts

A1 A2 A3

B1 B2 B3

C1 C2

commit # 2 3 4 5 6 71

A

B

C

time

artifacts

A1 A2 A3

B1 B2 B3

C1 C2

A

B

C

File based (changes over time):

Commit based:
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• Artifacts are manually derived from others
 A time consuming, human activity

• Some artifacts are automatically generated 
or compiled
 a quick build process     that can be repeated 

anytime

• A development process takes time:
 makro time scale (e.g. a year)

• Manual derivation is slow and extensive:
 development step: micro time scale (e.g. a day)

• Automatic generation, testing is quick: 
 nano time scale (e.g. 1-10min)

Artifacts Over Time: Development

Each incremental build: Generator maps model A 
to code. Class C imports (=depends on) B

Developer thinking time:
Creating and changing artefacts

time

A

B

C

B2

B.o

C.o

B.o

C.o

handwritten
artifacts

automated:
generated,

compiled
artifacts

build #1 2 3

A.c

A.o
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Automation in Development

• Manual derivation is extensive even on the micro 
steps / time scale

• Automatic generation, testing is quick: nano time 
scale

• Consequences:
 automate build with a robust build script
 automate testing (e.g. junit like) 

and simulation (e.g. simunit)
 automate analyses (e.g. continuous integration tools)
 keep project buildable / testable at all times
 reduce redundancy (single source of information)
 use generators from abstract to concrete
 avoid lengthy manual tool chains
 reuse generators to stay agile
 DO NOT make one-shot generations
 DO NOT modify generated artifacts 

B

C
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• Macro time: development process
• Micro steps: manual activities
• Nano time scale: automatic activities

• Build scripts (gradle, make, mvn) include 
generation, compilation, testing, deployment, 
consistency checks, transformation, etc.

• They are a natural part of the methodical steps 
of the development process.

• Automation changes the development process!

• Agile evolution needs as much automation as 
possible.

Build Scripts and Development Steps
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Model-Based Systems Engineering for Automotive System Development

Bill of Materials (BOM)

Product StructureFunctional Architecture

System Architecture
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Challenges in Model-Based Systems Engineering of Automotive Systems

Stakeholder 
Needs

Operating
Principle 

Technical 
Architecture

Realization
Layer

• Stakeholder Needs
 From customer to stakeholder needs
 Use Case Templates (Cockburn & 

Fowler) 

• Operating Principle 
 Semantical Feature & System 

Foundation 
 Design pattern 

• Technical Architecture
 Connection between Logical & 

Technical Architecture (DSL)
 Integrate Features

• Realization Layer
 Tracing solutions to requirements
 Generative connection
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Challenge: Complexity is Overwhelming

• Examples from smaller(!) excerpts
of how complexity complicates 
development and evolution

requirements functions product test structure

MBSE
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Systems Engineering Concepts we Already Know

Development 
activity

Model language

conforms to

produced by

used for

Development 
method

hierarchically 
consists of

uses

Actor

Developer Tool
Project

Model executed by

Theory
contains

is sound
foundation 

for

enables

• The concept model illustrates some relevant concepts and their relationships.
• In this chapter we introduced: model, development method, and their underlying theory.

Concept
model

Rep.
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Concept Model for Development Methods and Projects

Iteration

Developer

subtasks

Task

Project

Phase

Concept
modelDevelopment 

Method has

has

Development 
Activity

hierarchically 
consists of

Artefact

executes

isOfKind

Role

assumes

Method definition

Artefact-Type

reads

updatescreates

subactivity

isOfKind

Project (method application)

done
by

reads

updatescreates

Rep.
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Function-based Universal Specification and Construction Principles

1. The function paradigm is the foundation
 Clear boundaries, clear input/ouput signatures

2. Abstraction with dedicated models to master 
complexity 

3. Controlled, explicit underspecification
 abstraction, variability, ability to describe the desired 

range of allowed behaviors

4. The concept of stream
 as mathematically precise, time dependent model of 

input/output behavior

5. Composition into hierarchies of function nets

6. Static dimensioning of parameterized functions

7. Adequate modelling techniques center around the 
function paradigm, e.g. SysML

«component»
Cyber-

Physical
System

CPF

«energy»

«fluid»

«signal»

«item»

«energy»

«fluid»

«signal»

«item»

«data» «data»

Rep.
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• Modelling Cyberphysical Systems
• Modelling Software

• Software synthesis (code generation)

• Composition
• Refinement
• Evolution (Agility)
• Variability

Content of the Lecture

• Modelling in Development
• Software and Systems Engineering
• Development Methods (Agility, Scrum, V)

• Modelling Paradigms: 
 Data, Function, Structure, Behavior

• Modelling languages, e.g.
 Class Diagrams   for data and physical entities
 StateCharts for state-based behavior
 Architecture for function, component and gadgets
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• You would not design an airplane by putting together nuts and bolts – why should we do this with software?

• MBSE reduces the conceptual gap [FR07]
 Between problem domains (e.g., robotics, medicine, law) and solution domain (software engineering)

• Models increase abstraction
 the model of a software application is specified on a higher abstraction level than traditional programming languages

• This eases communication, documentation, and integration of domain experts

• MBSE enables and facilitates automation
 Model checking, artefact tracing, integration
 Model transformation (model-to-text, model-to-model)

• MBSE facilitates producing high-quality software
 Depends on the generator. Easy to improve (generated) code base

Benefits of Model-Based Software Engineering (MBSE)

[FR07] R. France, B. Rumpe. Model-Driven Development of Complex Software: A Research Roadmap.. In: Future of Software Engineering 2007 at ICSE.
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• Understanding, applying, analyzing, evaluating, and creating 
 Models by applying modeling methods
 Functional modeling and models in systems engineering
 Requirements modeling
 Data modeling
 Geometric and physical modeling
 Structure and behavior modeling
 Systematic CPS engineering

• Syntax and semantics of selected modeling 
languages (including UML, SysML)

• Digital twins

• Quality assurance

Learning Objectives Rep.
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Model-Based Systems Engineering

MontiArc Architecture Modeling Management Cockpit 
for Controlling

Energie Navigator modeling infrastructure for 
building information management 

SMArDT specification method for 
requirements, design, and testing

We hope you had fun and 
will actually be able to 
productively use the 
knowledge learned. 

Further research and 
deepening the knowledge: 
Bachelor and Master theses 
on sub-topics are available

All the best,

Bernhard Rumpe and Team


